PRAGMADEYV

STUDI®

TUTORIAL

PRAGMADEV

oooooooooooooooooooooo

Tutorial modeling and testing tools
Contents

1 Introduction 4q

2 A simple system 7

3 PragmaDev Specifier Tutorial 8

3.1 Organization i e e e e 8

3.2 Requirements 9

3.3 Design. e e e e e 13

3.4 Simulatingthesystem, . 27

3.4.1 Simulationoptions 27

3.4.2 Byte-codegeneration 27

3.4.3 TheSDLsimulator. 29

3.4.4 Verifyingthebehavior 38

3.5 Prototyping GUI e 40

3.5.1 GUIeditor e 40

3.5.2 Simulation e 44

3.6 Conclusion e 45

4 PragmaDev Studio 46

4.1 Testing e e e e e 46

4.1.1 Testcase e e e e e e e e 46

4.1.1.1 Declarations e 49

4.1.1.2 Ports 50

4.1.1.3 Templates, 51

4.1.1.4 Coretestcase, 51

4.1.1.5 Controlpart 52

4.1.2 Simulation against the SDLsystem 52

4.2 Codegeneration 55

4.2.1 Code generationoptions 55

4.2.2 Graphical debugging 58

4.3 Validation. 62

4.4 Conclusion e 70

5 PragmaDev Developer Tutorial 71

5.1 Organization e e e 71

5.2 Requirements 72

5.3 Design. e e e e e e e e e e e 77

5.4 Runningthesystem 95

5.4.1 Generationprofile, 96

PragmaDev Studio V6.0 Page 2

H .
Tuiorlﬂl modeling and testing tools

5.4.2 Compilationerrors, 99
5.4.3 TheSDL-RTdebugger. 104
5.4.4 Verifyingthebehavior. 113

5.5 PrototypingGUI 115
5.5.1 GUIeditor e 115
5.5.2 GUIsimulation. 119

56 Conclusion e 120
6 Avutomatic documentation generation 122
6.1 Publications e 122
6.2 Documentation. 127
6.3 Automatic generationt e 132

PragmaDev Studio V6.0 Page 3

Tuioriul modeling and testing tools

1 Introduction

Before starting this tutorial, it is important to understand the basic concepts used in
PragmaDev Studio.These concepts derive from the two languages supported by Prag-
maDev Studio, SDL and SDL-RT:

« SDL stands for Specification and Description Language. SDLis a graphical, object-
oriented, formal language defined by the International Telecommunication Union-
Telecommunication Standardization Sector (ITU-T) as recommendation Z100.
The language is intended for the specification of complex, event-driven, real-time
and interactive applications involving many concurrent activities that communi-
cate using discrete signals.

SDL-RT stands for Specification and Description Language - Real Time. It is a
mix of SDL with another graphical language, UML, and of a textual language, C.
It retains the graphical abstraction brought by SDL while keeping the precision
of traditional techniques in real-time and embedded software development and
making simpler the re-use of legacy code by using natively the C language. The
object-orientation is also pushed a step further by using the UML diagrams.

The underlying concepts of both languages are the same: the overall application to de-
velop is called the system. Anything that is outside the system is called the environ-
ment. The system itself is described via four complementary and consistent views:

o Architecture

A system can be decomposed in functional blocks. A block can be further de-
composed in sub-blocks and so on until the functionality of the final blocks are
simple enough. A block then fulfils its functionality with one or more processes,
communicating with each other via messages (also called signals). A process
is basically a task and has an implicit message queue to receive messages from
other tasks. There is no need to define it. A block has no direct implementation in
the final application; it is a matter of organizing and structuring the application.
Blocks and process are called agents.

4
4
/7 process

7 block

process

system

~
Z
7
7
3
[72]
«Q
3
[72]
«Q
L

\ block process

PragmaDev Studio V6.0 Page 4

Tutorial

modeling and testing tools

o Communication

Agents exchange messages through channels. Messages going through channels
are listed to define the interface between the agents. When it comes to final code
on the target, channels have no direct implementation; they are only used for
structuring the software and defining the interfaces.

» Behavior

A process behavior is described graphically as a finite state machine. Internal pro-
cess states, events (messages), decisions, timer manipulations, semaphore ma-
nipulations have specific symbols briefly summarized below necessary to under-

stand the following tutorial:

D) Start §:

D State

Start timer

Stop timer

j Input
:> Output

Take semaphore (*)

Give semaphore (*)

Plain code

<> Decision 'j

Create process instance

Declarations

(*) SDL-RT only

SDL or SDL-RT procedures can be called within the process behavior description. In
SDL-RT, C functions can be called as well; SDL also allows the call of C function via

external operators or procedures.
 Data and syntax
This is where SDL and SDL-RT differ the most:

— In SDL, data is defined via ADT (Abstract Data Types), using specific con-
cepts and notations. The data manipulation has also a specific syntax, de-

rived from languages such as Pascal.

— In SDL-RT, the C language is used to define and manipulate data, making

things more familiar to developers.

Another SDL-RT specificity is the integration of UML use case and class diagrams for
less time-critical parts of the system. Objects can be associated to processes or blocks

PragmaDev Studio V6.0

Page 5

M .
Tuiorlﬂl modeling and testing tools

and used in the behavioral parts of the processes.

In both SDL and SDL-RT models, PragmaDev Studio also integrates the Message Se-
quence Chart dynamic view. On such a diagram, time flows from top to bottom. Life-
lines represent agents, semaphores or objects and key events are represented. The di-
agram emphasizes the sequence in which the events occur.

The two languages have each their specific domain of usage:

« SDL will be mainly used during the specification phase. Being formal, it also al-
lows more possibilities of verification and testing.

« SDL-RT will be mainly used in the development phase, since it is closer to the
hardware on which the software will eventually run.

In addition to the full features PragmaDev Studio, there are also two variants of the
tool that focus on each of this languages: PragmaDev Specifier for SDL modelling, and
PragmaDev Developer for SDL-RT modeling.

Would you need any extra information on the diagrams and their meaning, the follow-
ing references may be used:

« For SDL, the SDL Forum web-site has many tutorials and presentations:
http://www.sdl-forum.org/

« For SDL-RT, the reference manual is available in PragmaDev Studio via the Help
/ SDL-RT reference menu. This manual is also available on the SDL-RT web-site:

http://www.sdlrt.org

PragmaDev Studio V6.0 Page 6

H .
Tuiorlﬂl modeling and testing tools

2 A simple system

The system we have chosen is simple enough to be written from scratch but rich enough
to pinpoint the basics of SDL-RT and SDL. It is a very basic phone system composed of
a central and of several phones. When the phones are created, the central gives them
an automatically computed phone number. When a user takes a phone to call another
one, the phone asks the central the id of the phone to be called identified by its phone
number. The caller sends directly a call request to the distant phone. For simplicity
sake the distant phone automatically answers.

This tutorial is divided into two parts, depending on the tool you will be using, or on the
modelling language if you're using PragmaDev Studio:
« The tutorial for PragmaDev Specifier describes SDL modelling and starts on page
8.
o The tutorial for PragmaDev Developer describes SDL-RT modelling and starts on
page 71.
The last part of this tutorial describes the automatic documentation generation (page

122). Itis based on the SDL system but that can be applied to the SDL-RT example, and
therefore will work in both variants of the tool.

If you do not want to design the example, you can find a complete project of this system
in the examples under "Specifier/Tutorial" and 'Developer/Tutorial .

PragmaDev Studio V6.0 Page 7

Tuioriﬂl modeling and testing tools

3 PragmaDev Specifier Tutorial

3.1 Organization

Let’s get our hands on the tool! Start PragmaDev Specifier (or PragmaDev Studio if
this will be the application you will be using). The window that appears is called the
Project manager:

PragmaDev Studio - O had

Studic Project Edit View Element Generation Validation Windows Help

H =

The Project manager window

The project manager gathers all the files needed in the project. First let’s create a new

project with the New project button: I

PragmaDev Studio V6.0 Page 8

Tuioriul modeling and testing tools

A window will pop up to set the project file name. Use the ‘Browse’ button to select the
project’s parent folder and name it "phone":

PragmaDev Studio x
Enter a file name for your new project:
bl/Documents/PragmalevStudio/Tutorialé)/phone.rdp Browse

All files in the project will be stored in the project file directory by default.

Cancel
Click OK to create the project and open it:

PragmaDev Studio - Project "phonerdp” - O x

Studic Project Edit View Element Generation Validation Windows Help

E & & & B 5

[E phonerdp

Phone empty project

3.2 Requirements

Let us express the requirements of our system with a Message Sequence Chart (MSC).
To add an MSC, select the project, and click on the right mouse button. A contextual
menu will appear:

PragmaDev Studio - Project "phone.rdp" — O X

Studio Project Edit View Element Generation Validation Windows Help

E & H B & %

Add child element...

Add existing files...
Rename / move file...

Copy
Cut
Paste
Delete

Set default for build
Build...
Debug...

Compare with other diagram...

Add components to the project
Select Add child element and the following window will appear:

PragmaDev Studio V6.0 Page 9

Tutorial

PRAGMADEV

modeling and testing tools

5 Add child element

Containers
Requirements
Declarations

Active architecture
Behavior

Passive architecture
Hardware architecture
Testing/Validation
Documentation
External files

Mame:
File: Mew
Language:

Create legacy diagram

Open

[Auto-sort

Cancel

The add component window

In Requirements, select MSC element and click on the New button. Go to the directory
where your project is and type in "normal" with no extension. Click on save and you

will get the following window:

5 Add child element

Containers

Declarations

Active architecture
Behavior

Passive architecture
Hardware architecture
Testing/Validation
Documentation
External files

Requirements table

Mame: normal
File: io/Tutorial60/normal.rdd Mew
Language:

[] Create legacy diagram

Usecases HMSC MSC OTF

Open

[Auto-sort

Cancel

Completed Add component window

Click Ok and the "normal" MSC appears in the "phone" project:

Studio Project Edit

it e
'k' Fragmallev studio - Froject pnonerdp (modimed —

View Element Generation Validation Windows

TN

o 7|

X
Help

=] E phonerdp

"normal” MSC in "phone" project

PragmaDev Studio V6.0

Page 10

otorial PRAGMADEYV

modeling and testing tools

Double click on the MSC name or icon to open it. The MSC editor opens:

'ﬂ PragmaDev Studio - MSC Diagrams = O X
Diagram Edit Search View Export Windows Help
o e AR o BXEERS R [
JB normal

|
o | e

i

1Y

The MSC editor

PragmaDev Studio V6.0 Page 11

M .
Tuiorlul modeling and testing tools

Draw the following to express the requirements of our phone system:

PragmaDev Studio - MSC Diagrams = O X
Diagram Edit Search View Export Windows Help

B = & W@ o B A BB |
normal
‘@ W
i,
»
RTDS_Env pLocal pCentral pLocal
| sRefpdy
< Disconnected >
-
sCall(2) ~
sGetld(2) <
Id{...
s |- sid{...)
—* sCnfReq ~
=
CnxjConf
e | sCnxon
|~ sCallConf
< Connected >
T sHangUp -
sDigReq ~
|- sDis|fonf
|~ sHangUpConf
< Disconnected >
- |< >

The "normal" MSC

You will have to use the tool bar on the left. If you have any problem refer to the user’s
manual.

This MSC basically says the following:
« pCentral indicates the system has been initialized and is ready

« The initial global state is Disconnected

PragmaDev Studio V6.0 Page 12

M .
Tuiorlul modeling and testing tools

The user represented as the environment (RTDS Env) makes a request on the first
phone pLocal to call the phone with the number 2

The first pLocal asks the central the queue id of the phone with number 2

The first pLocal uses the id to send a connect request (sCnxReq) to the second
pLocal

The second pLocal being disconnected, it confirms the connection (sCnxConf)
The first pLocal tells the environment the call has succeeded

The global system state is then considered Connected

The user hangs up

The first pLocal sends a disconnection request (sDisReq) to the second pLocal
The second pLocal confirms disconnection (sDisConf) back to the first pLocal
The first pLocal tells the environment the disconnection is confirmed

The overall final state is back to Disconnected

You can write some other MSCs to get clearer ideas on what you want to do. Note the
instances represented on the MSC can be any type of agent. Somehow you are roughly
defining the first architectural elements. You can copy from the SDL/Tutorial example
the "normal" and "busy" MSCs in the project to complete the description.

3.3 Design

Let us now specify and design the system. As for creating an MSC, select Add child
element on the project, then the Active architecture category in the dialog, and select
System component. Note that the dialog will this time require to set a modelling lan-
guage for the diagram. Choose SDL Z100:

Add child element X

Containers

Requirements

Declaratlon System Block class

Behavior

Passive architecture

Hardware architecture Name: Phone

Testing/Validation

Documentation File: io/Tutorial60/Phone.rdd MNew Open

External files
Language: |SDLZ100 ~

Create legacy diagram

[Auto-sort

Cancel

PragmaDev Studio V6.0 Page 13

Tutorial

PRAGMADEYV

modeling and testing tools

After validating the dialog, the system appears in the project:

Studic Project Edit View Element

'ﬂ PragmaDev Studio - Project "phonerdp” (modified) - O x

Generation Validation Windows Help

R @ e

%%

normal

busy
&t Phione

"Phone" SDL system in the "Phone" project

Double click on the system name or icon to open the system diagram in the SDL editor:

'ﬁ PragmaDev Studic - Diagrams - bt
Diagram Edit Search View Export Windows Help
‘PSR oPRXE S LG DG ¥
JB Phone |_
& .
.::..... 1 - Part.
»
||
-
-
-
L[]
The SDL editor
The system will be divided into two main parts:
PragmaDev Studio V6.0 Page 14

Tuioriul modeling and testing tools

« The definition of the data types and messages we will use.
 The architecture in terms of processes.

To avoid mixing things, we will use partitions in the diagram. A partition is just a means
to separate different kind of contents within a diagram,; it is just a group of pages that
can contain any symbol allowed in the diagram.

PragmaDev Studio has created the first partition for us, so let’s use it to declare the
types and messages we’ll need:

PragmaDev Studio - Diagrams - O *
Diagram Edit Search View Export Windows Help

TE =@ @ » B A B~/ U & 4 & id L [¥
Phone
o " mE= O
1 - Part. @
1Y
[N

/* Maximum number of plLocal processes */
synonym NUM_PHOME Integer = 5;

/* Type for a phone number */
syntype PhoneNumberType = Integer
default 1:
constants 1..NUM_PHONE
endsyntype;

/* Type for the array of pLocal pids */
newtype pLocalArray

Array(PhoneNumberType, PID)
endnewtype;

signal sCall{PhoneMumberType), sHangUp:

signal sReady, sCallConf, sHangUpConf, sBusy;
signal sCnxReq. sCnxConf, sDisReq, sDisConf;
signal sGetId(PhoneNumberType), sId(PID). sError

Declarations in the "Phone" system
You actually don’t need to type the declarations completely, since PragmaDev Studio
provides a way to directly insert skeletons for all kinds of declarations. To insert a
skeleton, open the symbol text for modification, then right-click in the text box. The
following menu appears:

PragmaDev Studio V6.0 Page 15

PRAGMADEYV

modeling and testing tools

Tutorial

4 PragmaDev Studio - Diagrams — O *
Diagram Edit Search View Export Windows Help
i = i i 5 ay ([o L
Tt =R ePEAEB:L”~ LOAHGIELD |
J 3 Phone |
i ~
e
e
LY
.......l
[.
* i *
[| /* Maximum number of pLecal processes */
- Copy
Cut
- Paste
- Go to item definition
- Insert declaration » Comment
» ‘Array' constant
‘Array’ type (associative array)
‘Bag' type (unordered multi-set)
'String' type (ordered list)
‘choice’ type (union)
‘literals’ type (enum)
‘signal list' declaration
‘signal' declaration
'struct’ constant
‘struct’ type
‘use’ declaration (imported package)
Synonym (constant)
Syntype (constrained type)
Variables
v
a < >

After selecting the declaration kind, the skeleton is inserted in the symbol text:

'E PragmaDev Studio - Diagrams = O X
Diagram Edit Search View Export Windows Help

R R R . oy |fr R :
::‘l‘EIE:::ﬁ)::?aﬁéﬁ(l‘s::ﬁﬁ::ﬁﬁﬁﬁﬁﬁ []
JBPhone |_
o A
e

T

LY

.O...O.I

[.

/* Maximum number of pLocal processes */

|| synonym ~constant_name~ ~TypeName~ = ~value~;

-

-

-

The parts that need to be specified are surrounded by "~" characters and colored in gray.
Here, the constant name, the type name and the value have to be specified.
Here are the data and types we need:

PragmaDev Studio V6.0 Page 16

M .
Tuiorlﬂl modeling and testing tools

» The synonymdeclaration ("Synonym (constant)" in the "Insert declaration" menu)
declares a constant for the maximum number of phones;

« The syntype ("Syntype (constrained type)" in the "Insert declaration" menu) dec-
laration declares a special type for the phone. This is basically an integer restricted
to be between 1 and the maximum number of phones;

« The newtype declaration declares the type for the array of phone processes ("’ Ar-
ray’ type (associative array)" in the "Insert declaration" menu) ; the index is a
phone number, and the value is a PID, which is a basic type in SDL, just as Inte-
ger.

The second declaration text box declares the signals that will be used in the system.
They are mainly the ones we used in the MSC we created earlier, plus a few ones for
error conditions. Three of the signals we declare have parameters: sCall, sGetId and
sId. Note the sCall and sGetId signals use the PhoneNumberType type we’ve declared
above.

Declaration skeleton insertion is not provided for signals, but PragmaDev Specifier will
offer to auto-complete your code as you type. So for example, when declaraing the
sCall signal, if you start to type the signal parameter type, a list will appear under your
text cursor listing all known types that start with the text you’ve already typed:

» -
signal sCall(g] l

PhoneMumberType

You can select one of the choices by using the up and down arrow keys, or by clicking
on it in the list. Note that entities defined in a symbol are known only when the symbol
has been validated, and if its syntax is correct.

Now let’s design the architecture of the system. As we said, we’ll use another partition,
so let’s create it first, using the new partition button in the partition tool-bar:

A/l B Gd & i LE s

MNew partition after current one

A new empty partition appears. What you’ve already done is of course not lost: you can
go back to it using the other buttons in the partition tool-bar.

The system being very simple it will not require any block decomposition. The central
will be a process as well as the phones. All the phones have the same behavior so they
will be several instances of the same process. The phone system is therefore made of
two processes. For better legibility their name will be prefixed with a "p" because they
are processes:

PragmaDev Studio V6.0 Page 17

M .
Tuiorlul modeling and testing tools

PragmaDev Studic - Diagrams — O *
Diagram Edit Search View Export Windows Help

T O =5 @)@ » BB A B/, 6 b o dd L)|

Phone

T ~

.

[sReady] [sBusy,
» sCallConf,
sHangUpConf]

[y cEnvCentral

[1

pCentral
cEnvLocal

[sGetId]

cInternal

[scall,
sHangUp]

[sError, pLocal(@, NUM_PHONE)
sId] [sBusy,

sCnxConf,
[l sCnxReq,
sDisConf,
sDisReq]

cSelf

phone system view

Notes:

« This architecture is not strictly correct in regular SDL, since processes should not
appear directly at system level. But PragmaDev Studio allows it, so let’s keep
things simple.

« To draw the cSelf channel keep the shift key down and click where the channel
should break. To change the position of the channel name, click on a segment,
right-click on it and select Set as text segment in the contextual menu.

« Signals and the NUM_PHONE constant have already been declared, and process names
appear in the MSC. So their names will be auto-completed by PragmaDev Studio.

Since pCentral is making the link between the pLocal processes and considering the
number of phones can be modified, pCentral will create all instances of pLocal. To
represent that, the name pLocal is followed by the initial number of instances and the
maximum number of instances we defined in the synonym in the other partition.

Messages to be exchanged between the processes are listed in the channels ==. To
specify the incoming and outgoing messages in the diagram double click on the "[]"
and type in between the square brackets. The channel going to the outer frame is im-
plicitly connected to the environment. In the above example the channel cEnvLocal
connects pLocal to the environment and defines sCall and sHangUp as incoming mes-

PragmaDev Studio V6.0 Page 18

Tutorial

modeling and testing tools

sages and sCallConf, sBusy and sHangUpConf as outgoing messages. The channel
cEnvCentral connects pCentral to the environment and defines sReady as an outgo-
ing message. The cSelf channel has been created to represent messages exchanged
between the different instances of pLocal.

Select pLocal and click on the right mouse button to open the process definition, or
simply click on the & button that appears when you hover the mouse pointer over it:

[sCall,
sHangUp]

[sError,
sId]

pLocal(®, NUM_PHONE)

[sBusy,

Open definition... -

Show usage...
Properties...
Adapt size to text

Copy
Cut

Paste
Delete
Select to end

Copy traceability info.

Cover requirement(s)...

Set as text segment

Contextual menu

.
1

Since the process is not in the project, it will be asked what type of element must be
added. Keep the pre-selected options, Process element in Behavior and click OK.

A new window opens, showing the process definition. As for the system, the first parti-

tion has been automatically created:

PragmaDev Studio V6.0

Page 19

PRAGMADEYV

Tutorial modeling and testing tools

&) PragmaDev Studio - Behavioral Diagrams — O *
Diagram Edit Search View Export Windows Help
B = Qe v A P e R s

J 3 plocal |

.

#

The process behavior description in SDL editor

The first thing to design is the start transition. It is what the process will do as soon as
it is created. In the case of pLocal process, we do nothing;:

That transition means that once the process is started it will go to state Idle. Place a
start symbol “¥, keep it selected and click on the state symbol in the tool bar ¥, The

PragmaDev Studio V6.0 Page 20

M .
Tuiorlﬂl modeling and testing tools

state symbol is automatically inserted and connected after the start symbol. An internal
data dictionary is updated on the fly to ease the writing of the process behavior. First
create the Idle state definition: click on the State icon and put it in your diagram:

Idle

The state name is in edit mode so you can directly type Idle in it; but you may also use
auto-completion to list the available choices for the state symbol.

Once the state has been defined, click on the input symbol ¥ in the tool bar and the
input message symbol will be automatically inserted below the state symbol. When you
start typing, a list of all available messages will appear:

g {

sBusy -
sCall

sCallConf

sCnx Conf

sCnxReq

sDisConf

sDisReq

sError

=Getld

sHanglp W

Select the sCall message and complete it with the correct parameter. This facility is
context sensitive and works for almost everything: SDL keywords, agents, channels,
signals, states, types, variables, timers, You can now finish the state description by
yourself as explained below.

Considering the requirements described earlier, the pLocal process can either be asked
to make a call by the operator or receive a call from another phone. The Idle state can
therefore receive two types of messages described below:

PragmaDev Studio V6.0 Page 21

H .
Tuiorlﬂl modeling and testing tools

Idle

sCall | cal ledNumber) < sCnxReq |:

sGetld(callediumber) > remotePId := SENDER

(Ge‘ttingld > sCnxConf TO remotePId >

When receiving sCnxReq message, it will reply sCnxConf to the sCnxReq sender. To
and sender are SDL keywords in the output symbol. The sender id is stored in the
remotePid variable. The process then goes to Connected state.

If asked to make a call, the phone number to call needs to be retrieved. To do so, a
variable of the correct type is given as parameter of the receiving message. It will be
assigned when this message is received. Since pLocal has no idea how to address a
phone number it asks the central process the process id of the called pLocal with the
sGetId message. The calledNumber variable is re-used as is. No receiver is specified
since the receiver process is completely determined by the system architecture. We
may however have used T0O pCentral to specify it, or even to parent since pLocal
was created by pCentral. The process then goes to GettingId state, waiting for the
central to answer.

Once the pid of the remote phone is received from the central, it is stored in a local
variable and the connection request message sCnxReq is sent. The process then goes
into state Connecting. If the pid of the receiver was not found, the sError signal is
received. A sBusy message is sent back to inform the user and the process goes back
into state Idle:

Gettingld

s1d(remotePId) sError

i
i

sCnxReq TO remotePId > sBusy VWIA cEnvlLocal >

Connecting Idle

Note the receiver for the sBusy message is specified by using VIA cEnvLocal. It means
that the signal will be sent to the process at the other end of the channel cEnvLocal,
connected to the process pLocal in the system diagram:

PragmaDev Studio V6.0 Page 22

H .
Tuiorlﬂl modeling and testing tools

[sBusy.
sCallConf,
sHangUpConf]

cEnvliocal

[sCall,
sHangUp]

w pLocal(@, NUM_PHONE)

Since this channel is connected to the system’s external frame, the signal will go to the
environment. Please note specifying a receiver for sBusy is necessary here, since this
signal may be sent not only to the environment, but also to the other pLocal processes
in the system. If a receiver is not specified, the SDL semantics is to choose randomly a
receiver among the available ones, so the signal may have been received by the wrong
process.

Once the connection request has been sent, the remote process is either available and
replies sCnxConf, or not available and replies sBusy:

Connecting :|

sCnxConf

< sBusy <
sCallConf > sBusy VIA cEnvLocal >

(=)

Depending on the answer the resulting state is different.

Now that you have understood the basics of the finite state machine you can complete
the process behavior:

(Con nected

Connected

sCnxReq sDisReq sHangUp

ik
i
i

sBusy TO SEMDER> sDisConf TO SEMDER> sDisReq TO remotePId >

Idle Disconnecting

[
I

PragmaDev Studio V6.0 Page 23

M .
Tuiorlul modeling and testing tools

Disconnecting :|
sDisConf |:
sHangUpConf }

As the description is done, the browsing window on the right side is updated allowing to
quickly jump to a transition: just click on the transition. This is especially useful when
the system gets big.

= I
(start)
Connected
sCnxReq
sDisReq
sHangUp
Connecting
sBusy
sCnxConf
Disconnecting
sDisConf
Gettingld
sError

sId

Idle

sCall
sCnxReq

[l
-

It is now time to declare variables in our process. To do so, the text symbol in the
process behavior diagram is used. The declarations are introduced via the keyword
DCL, followed by a list of couples <variable name> <variable type>, with an optional
default value:

dcl
remotePId PID = NULL ,
calledNumber Integer ;

Just as for types, a skeleton for the declaration can be inserted via the contextual menu
(entry Variables’ in the ’Insert declaration’ submenu). Note the type of the variable
used in the input and output symbols for sCall and sGetId are not strictly the ones ap-
pearing in the definition: the signal declares a PhoneNumberType, but we use a regular
Integer. This is no problem as long as the Integer satisfies the conditions set on the
PhoneNumberType type.

Let’s have a look at process pCentral now. It must do the following things:
« At startup, it creates all instances of pLocal and gives them a new phone number.

« When asked for a phone number, it sends back the pid for the corresponding pro-
cess.

PragmaDev Studio V6.0 Page 24

Tuioriﬂl modeling and testing tools

Go to the system diagram Phone, and open pCentral (via the contextual menu or the &
button). Since the process is not in the project, it will ask if it should be added. Answer
Yes and a pre-filled Add child element window with the process name appears. Click
OK and the process definition window appears. Let’s first write the needed declarations
and the initial transition:

dcl 1)
index Integer = 1,
pLocals pLocalArray ;
@
(q: NUM_PHONE)
plLocal sReady |}
Idle

pLocals (index) := offspring:
index = index + 1

The variables include an index which will be used as the phone number for created
pLocal’s, and an array mapping the phone number to the pid.

else

ot
-

The initial transition creates all instances of pLocal within a loop testing index <=
NUM_PHONE. Each time the loop is executed the pLocal process is created and its
process id (offsrping keyword for the parent process) is stored in the pLocals array,
using the phone number as index.

After the pLocal processes creation, the sReady signal is sent to the environment to
indicate initialization is finished and the process goes to state Idle.

Note we have voluntarily introduced an error by typing "; " instead of ", " at the end of
the first line in the lowest block of code to later show how to analyze the errors.

Idle :|
sGetld| index) {
tagex <= NUM PH
(true) (fa‘Lse)

sId|plocals (index)) to sender> sError to sender >

w @

PragmaDev Studio V6.0 Page 25

H .
Tuiorlﬂl modeling and testing tools

The only request that can be received by pCentral process is sGetId. The phone num-
ber to reach is the parameter passed to the signal, which we will receive in the index
variable. The process id of the phone is extracted from the array and sent back directly
to the sender of the sGetId message (SDL keyword sender). If the phone number is
out of range, an error message is sent back to the sender.

PragmaDev Studio V6.0 Page 26

M .
Tuiorlﬂl modeling and testing tools

3.4 Simulating the system

Now that the system has been designed, we’ll debug it using PragmaDev Studio’s SDL
simulator. The simulation process is divided into two main phases:

« First, the code for all transitions in all system’s processes is transformed into an
internal representation called SDL byte-code. This language is used only inter-
nally and has no direct external representation.

» The generated byte-code is then executed based on a scheduling managed by Prag-
maDev Studio model debugger. The simulation conforms to the SDL semantics:
all transitions are executed in no time and cannot be interrupted.

3.4.1 Simulation options

The Simulation options and the code generation options are edited via the Generation/
Options... menu. By default a valid simulation profile is listed as well as an empty code
generation profile:

Generation options = O X
Profiles: Main Fpi2
Main options
Simulation options [] Manage all types in a single system-wide scope

Force default values for all types
Defer byte-code loading at execution time

Treat internal messages before external ones

Add suffix to external procedure names (uncheck to handle via TTCN getcall/reply)

O

O

[Activate code coverage analysis
[[] Use XML-RPC for operators

+ - Rename...

Cancel Import... Export...

As the simulation profile is the only valid debug profile, it will be used by PragmaDev
Studio by default.

3.4.2 Byte-code generation

Select the Phone system in the project manager and click on the Execute quick button
in the tool bar: %"

A log window opens and displays the actions performed by the byte-code generator.
Before actually generating anything, PragmaDev Studio performs a global syntax and
semantics check on the written code. So any basic error such as typing mistakes or
misspelling in variable names will be reported during this phase.

Since we introduced an error in process pCentral, this is what appears in the byte-code
generator log window:

PragmaDev Studio V6.0 Page 27

Tuioriul modeling and testing tools

Generation/build for Phone with Simulation options — O X

=== Generating byte-code for diagram Phone (E\TmphLyX_Tuteriah\Doc\Meodels\SpecifierTutorial\Phone.rdd)...
=== Generating byte-code for diagram pCentral (e\Tmp'LyX_Tutorial\Doc\Models\SpecifierTutorial\pCentral.rdd)...
Errorl: Symbol SYM10, Unexpected end of text

!l Code generation failed!:

Diagram is not syntactically correct!

Byte-code cannot be generated!

Close Re-compile » |5ave dialog text as...

The byte-code generation started at system level, then went down in pCentral. During
the generation for pCentral’s start transition, the inversion between ";" and "," was
encountered. So the generation stopped and this error message was displayed.

Double clicking on the error automatically opens the SDL editor and selects the symbol
where the error occurred:

PragmaDev Studio - Behavioral Diagrams = O X
Diagram Edit Search View Export Windows Help
T B = b€l o0 b A BBEM DL 0 G BP0 LE| B
piCentral
- A
=m =
(start)
-
sGetId
- &
-—
(-:= NUM_PHDNE) (else)
_—
pLocal sReady
—
pLocals(index) := offspring; Idle
index := index + 1
v
- < >

Once the error have been corrected the log window should look like this:

PragmaDev Studio V6.0 Page 28

Tutorial

PRAGMADEV

modeling and testing tools

'H Generation/build for Phone with Simulation options — O

s

Generating byte-code for diagram Phone (EA\Tmp'\LyX_Tutorial\Doc'Models\SpecifierTutorial\Phone.rdd)...

Generating byte-code for diagram pCentral (e\Tmp\LyX_Tuterial\Doc\Medels\SpecifierTutorial\pCentral.rdd)...
--- Start transition

--- Transition |dle - sGetld

Generating byte-code for diagram plocal (E\Tmp\LyX_Tutorial\Doc\Madels\SpecifierTutorial\pLocal.rdd)...

--- Start transition

--- Transition Connected - sHangUp
--- Transition Connected - sCnxReq
--- Transition Connected - sDisReq
--- Transition |dle - sCall

--- Transition ldle - sCnxReq

--- Transition Connecting - sCnxConf
--- Transition Connecting - sBusy

--- Transition Gettingld - sError

--- Transition Gettingld - sld

--- Transition Disconnecting - sDisConf

Close Re-compile » |5ave dialog text as..

3.4.3 The SDL simulator

Once the byte-code generation is over, the SDL simulator window opens automatically:

'H PragmaDev Simulater - m} X
Debugger Options View Run Trace Environment Windows Help =«
L) o = - 13 x = -
Bl (s liimz o v oo wazdiEHerr <
Name Pid Sig SDL state Timers: Watches:
pCentral 1 1 RTDS Start Owner Name Time left Name Type Value
£ >
System time: 0
Local variables:
SDL system queue:
. . MName Type Value
Pid Receiver Signal
1 pCentral RTDS_startMessage
< >
PragmaDev Studio shell
=Free run off.
=>Real time 1s on.) .
=Unexpected messages will generate a warning.
Debugger state: STOPPED IA:tiva thread:

The SDL simulator window

PragmaDev

Studio V6.0

Page 29

Tuioriﬂl modeling and testing tools

The simulator window shows a global state of the running system in terms of:
« Running processes
« Sent messages
« Started timers
« Local variables when in the context of a running process
« Watched variables, allowing to see the value of any variable at any time

The lower part of the window is a shell where actions taking place in the system will be
reported.

Let’s first run a MSC trace so that we can see graphically what is happening in the sys-
tem. Click on the Start MSC trace quick button: 4+ A MSC Tracer window appears.
Now let’s actually start the system by clicking on the Run the system quick button: %

Let the system run until all pLocal processes are created by pCentral and their start
transition executed:

PragmaDev Studio V6.0 Page 30

H .
Tuiorlul modeling and testing tools

MSC Tracer - m] x
Trace View Windows Help

EH ke~

<New 1>

pCentral pLocal pLocal pLocal pLocal pLocal RTDS_Env
(1) (2) (3) (4) (s) (8] (-1)
pCentral RTDS_Env
(1) (-1)

_____ plLocal
g "{ 2) ‘
of Lo ___ ,{ pLocal ‘

pLocal

o0 gt % (4 ‘

77 pLocal
g ﬂ is) ‘

__ pLocal
o > (6)
] —_

————————— sRepdy
Py
po
o [—
e Idle
e Idle
e Idle
5] Idle
o Idle
o < Idle >
Tracing < >

Note you can detach the execution buttons bar by dragging it away from its header (the

zone looking like this: - if you don’t see it, go to the preferences in the "Studio" menu
of the project manager, and check the option "Detachable toolbars" in the "General"
tab):

Execution buttons

wr A= Y o vr o I g XN

Detached execution buttons toolbar
The environment is represented by the pseudo-process RTDS Env. This is not really a
process as it does not appear in the list of running processes in the simulator window
and has no code associated. It is only used to trace messages sent from and received by
the environment.

PragmaDev Studio V6.0 Page 31

Tuioriul modeling and testing tools

Process pCentral dynamically creates 5 instances of pLocal, sends the sReady mes-
sage to the environment and goes to state Idle. Each pLocal instance then go to state
Idle. On the left is the value of the system time. According to SDL semantics, all start
transitions executed in no time, so the system time is still 0 after all processes have
started.

Click on the Stop button to break execution: =

The SDL simulator window shows the list of all running processes, displaying for each
one its name, process id, number of messages in its message queue and SDL state:

PragmaDev Simulator - m} x

Debugger Options View Run Trace Environment Windows Help «

(=R ITEm = 4 F B e 2 "= H@@ P = &
-
MName Pid Sig SDL state Timers: Watches:

pCentral 1 0 Idle Cwner Name Time left MName Type Value
plocal 2 0 Idle

plocal 30 ldle

plocal 4 0 dle

plocal 5 0 ldle

plocal 6 0 ldle

< >
System time: 577
Local variables:

SDL system queue:

- - - Mame Type Value
Pid Receiver Signal
< H
=»Task plLocall3) prio:0@ created by pCentralll) at: @ ticks "
>Task pLocal(4) prio:0 created by pCentral(l) at: 08 ticks
=Task pLocal(5) prio:8 created by pCentral(l) at: 0 ticks
=Task pLocal(6) prio:® created by pCentral(l) at: © ticks

=Signal: sReady sent by: pCentral(l) at: © ticks
=S1gnal: sReady received by: RTDS_Env(-1) at: @ ticks
=Task pCentral(l) has changed to state Idle at: 8 ticks

=Task pLocal(2) has changed to state Idle at: @ ticks
=Task pLocal(3) has changed to state Idle at: @ ticks
»Task pLocal(4) has changed to state Idle at: @ ticks
=Task pLocal(5) has changed to state Idle at: @ ticks
=Task pLocal(6) has changed to state Idle at: © ticks
»stop
v
|Debugger state: STOPPED |Active thread: 6->plocal

SDL simulator window
Now let’s put a breakpoint in process pCentral:

« Open pCentral from the project manager, or by double-clicking its name in the
instance list in the simulator window.
« Gotothetransition for signal sGetIdin state Idle usingthe state/ message browser:
=Ewm=E O
(start)

Idle
sGetId

or the View menu:

PragmaDev Studio V6.0 Page 32

PRAGMADEV

Tutorial modeling and testing tools

i PragmaDev Studio - Behavioral Diagrams — O *
Diagram Edit Search View Export Windows Help =»

Refresh i
tmaE e 2lo s ae . ol
J pCentral v Edition mode |

- Mavigation mode " T= rli
i Show/hide side panel

[l
[~

(start)
Showy/hide notifications Idle
dcl sGetId

[J

index Show/hide printed page boundaries
pLocal Show symbol documentation hints

Zoom in
Zoom out

Zoom to 4

Header symbols alignment 4

Grid
v Sticky alignment lines

&)
<G>

(n:: NUM_PHONE)

|
pLocal sReady
I

else

T
~—

pLocals(index) := offspring, Idle
index := index + 1

— £

>

The state/ message browser and the View/ Go to menu allow to quickly navigate
among the transitions defined in the process. Selecting the transition will auto-
matically open the partition where the transition is and scroll to the corresponding
signal input symbol.

« Click on the signal output symbol just after the decision’s true branch:

sId{pLocals{index)) to sender) sError to sender

= (i)

PragmaDev Studio V6.0 Page 33

H .
Tuiorlul modeling and testing tools

« Click on quick-button % or go to Debug / Set breakpoint menu in the SDL editor.
A breakpoint symbol is displayed on the side of the selected symbol:

()
sGetId{index}%
(true) (false)

@ | sIdi{pLocals{index)) to sender> sError to sender>

))

We will now simulate an incoming message from a user:

» Go to the SDL Simulator and click on "Send an SDL message to the running sys-
tem" quick-button =
« The Send an SDL message window shows up:

Send an SDL message to system - m} x

Select the receiving process: Available messages: Message parameters:

Name PID Name # Type Mame Type Value
pCentral sCall 0 NORMAL_SIGMAL
plocal sHangUp 0 NORMAL_SIGNAL

plocal

1

2

3

plocal 4
plocal 5
&

plocal

Consider receiver state

Send Send & close Close

Save to file | |Import from file

Send an SDL message window

On the left are listed all possible receiving processes, in the middle all possible mes-
sages, i.e. all messages used in the SDL system, and on the right the value of the pa-
rameters associated with the selected message. Clicking on either the message or the
receiver will restrict the other list to show only the consistent choices. Here, we want
to send a sCall signal, so let’s select this signal in the list:

PragmaDev Studio V6.0 Page 34

PRAGMADEV

Tutorial modeling and testing tools

I Send an SDL message to system — O x
- g 5y

Select the receiving process: Available messages: Message parameters:

MName PID MName # Type MName Type Value
plocal param1 integer 1
plocal sHangUp 0 MNORMAL_SIGMAL
plocal

plocal

@ B oW oW e

plocal

Consider receiver state

Send Send & close Close Saveto file | Import from file

Since process pCentral cannot receive signal sCall, it disappears from the list of avail-
able receivers.

« Now let’s select the signal receiver and input the called phone number, which
should be passed as a parameter to the sCall signal:

) Send an SDL message to system — [m| X
Select the receiving process: Available messages: Message parameters:
MName PID MName # Type MName Type Value
plocal 3 sHanglp 0 NORMAL_SIGMAL
plocal 5
plocal 4
plocal 6

Consider receiver state

Send Send & close Close Savetofile | | Import from file

The signal parameters are described in the right part of the signal send window.
Double click on the parameter to edit its value and hit <Enter>.

+ Click the Send & close button.
« Resume system execution by clicking the Run button in SDL simulator window.
« The following actions appear in the MSC trace:

pCentral pLocal pLocal pLocal pLocal pLocal RTDS_Env
(1) 2) (3) (4) (s) (6) (-1)
—
sCall({paraml= L
P
< |

sGetId{{p HM17§;étingId ;

PragmaDev Studio V6.0 Page 35

H .
Tuiorlul modeling and testing tools

« When the breakpoint is hit: the SDL editor then pops up and displays the symbol
where the execution has stopped:

= @ | sId(pLocals{index)) to sender>

« Since we are in the context of a running process, local variables are automatically
displayed in the SDL simulator window. All complex variables such as structs or
arrays can be expanded to show their contents. Here are the local variables with
the pLocals array expanded:

Local variables:

Mame Type Value
index integer 2
SENDER pid 2
PARENT pid 0
1

SELF pid

plocalArray

plocals(2) pid
plocals(3) pid
plocals(4) pid
plocals(s) pid
OFFSPRING pid

[= B = R R S VY ¥

You can see the value for index is 2, so the value sent with the sId message will
be the pid stored at index 2 in pLocals, i.e. 3.

 You can also execute instructions line by line in the symbols by using the Flat step

quick-button: ¥

& | sId(pLocals{index)) to sender>

- ()

(NB: you may have to click on the button twice to go to the next state)
The signal send has been done, as shown in the MSC trace:

pCentral
(1

sIfi{{paramls

 Let’s now finish the system execution by pressing the Run button once more.

« When the signal sCallConf has been received by RTDS Env in the MSC trace, stop
system execution with the button
The SDL states for all running processes are updated in the simulator window:

PragmaDev Studio V6.0 Page 36

Tuioriul modeling and testing tools

Mame Pir S SDL state
pCentral 1 0 Idle
plLocal 2 0 Connected
plocal 3 0 Connected
plocal 4 0 Idle
plocal 5 0 ldle
plocal 6 0 Idle

« The SDL state of a process can be dynamically changed using the contextual menu
in the process list:

Mame Piv Sic SDL state
pCentral 1 0 Idle
plocal 2 0 Connected
plocal 3 0 Copgected
C cted
pLocal 4 0 Idg OTECE
Connecting
plocal 5 0 Idle Disconnecting
plocal 6 0 Idlg Gettingld

Some caution is required with this feature, since it may have unexpected results
on the system behavior...

+ We will now disconnect the two connected pLocal processes by sending another

signal. So press & once more:
Send an SDL message to system — O Pad
Select the receiving process: Available messages: Message parameters:
Mame FID Name # Type Mame Type Value
sCall 0 NORMAL_SIGNAL

plocal sHangUp 0 NORMAL_SIGNAL

plocal
plocal

[

plocal

Consider receiver state

Send Send & close Close Savetofile | | Import from file

This will send a sHangUp signal to the first pLocal (the receiver for our sCall mes-
sage) with no parameters.

 Send the message with the Send & close button.
« We saw that stepping could be done at code line level. There are other step levels
including:
— Step at SDL event level with button

This button will step one SDL event at a time. Click on it while looking at the
MSC trace; you'll see that each time a SDL event happens (signal send, signal
receive, process creation, timer start, and so on...), the system execution
stops just after the event.

— Step at transition level with button &=

PragmaDev Studio V6.0 Page 37

Tutorial

modeling and testing tools

This button will execute a whole transition and stop just after its end (usually
the next state symbol). Click on it while looking at the MSC trace; you'll see
the active process execute all actions in current transition up to the state
change, and the system execution stops.

3.4.4 Verifying the behavior

We will now check if the behavior is the one we expected in the first place. To do so we
will use the MSC diff feature.

« Make sure the execution is over by clicking button % a last time. Then go to the

MSC trace window, save the trace and close it.
+ Close the simulator window.
« In the project manager, open the trace diagram.

» Go to the Diagram / Compare with other diagram... menu to get the MSC Diff
configuration window and set it up as described below:

PragmaDev Studio x
Diff type: Basic M3C diff ~
First MSC: trace ~ Browse...
Second M5C: | normal ~ Browse...)

Filter activated

Messages:

Consider data: O
Timers:
States: O

Time constraints:

Display full results

Cancel

The first MSC is the trace and the second is the normal scenario we described in
the first place. Since the normal MSC was not supposed to be thoroughly detailed
we will only show and compare messages without considering their parameters.

Click OK; the following window appears:

Diagram differences X
Diagrams differ. (8 difference(s))

Highlight: Current All [Lifeline pLocal
(6) deleted from origin diagram

PragmaDev Studio V6.0

Page 38

Tuioriul modeling and testing tools

It allows navigation through the differences between the MSCs. By selecting All,
then all the differences will be shown in the diagram:

PragmaDev Studio - MSC Diagrams - O X
Disgram Edit Search View Export Windows Help
B = & EE@) e o B A MBS
trace
Mol e
.
Y

~
pCentral RTDS_Env
(1 (-1}
= ‘>{ pLocal ‘
i (2)
7777777777777777 pLocal
7 %) ‘

o |o |o |o |o |o |o |o |

H w

e
- ¢ Idle 5

- < >

v

The only differences between the MSCs are the dynamic task creation of the pLocal
instances. After that the exchange of messages are the same between the dynamic
trace and the specification. The SDL system therefore conforms to the normal
MSC specification.

This is the end of this very simple SDL simulation session. There are many areas that
have not been covered, such as timers, procedures, external operators, system queue
manipulations, watched variables, and so on... You may discover all these features
yourself using the examples delivered in PragmaDev Studio distribution or by designing
your own system.

PragmaDev Studio V6.0 Page 39

Tuioriul modeling and testing tools

3.5 Prototyping GUI

PragmaDev Studio has a built in support to design simple prototyping interface to ease

testing. We will build a very simple one for our phone system to demonstrate its capa-
bilities.

3.5.1 GUI editor

Add a Prototyping GUI node in the project (category Testing / Validation in the Add
child element dialog) and open it:

PragmaDev Studio - Project "phonerdp” (modified) - O x

Studic Project Edit View Element Generation Validation Windows Help

E =& B B & x|

= [g phonerdp

normal

busy

The left panel contains the incoming triggers for the GUI, the central panel the GUI
itself, and the right panel the outgoing message from the GUI:

PragmaDev Studio V6.0 Page 40

Tutorial

PRAGMADEYV

modeling and testing tools

'ﬂ PragmaDev Studic - Prototyping GUI "GULrdu”

= O *
File Edit Windows Help
;i O Pk
Triggers K] sbo. @ I o Widget output actions
sy CI3 = - A
SGULrdu = SGULrdu
~
v
< >
)
Let’s add 2 buttons and one LED:
i PragmaDev Studic - Prototyping GUI "GULrdu" (modified) —
& Prag typing m
File Edit Windows Help
| @ P K
Triggers K] bo. @ I a5 Widget output actions
sr CI3 = = N A
oGULrdu s wGULrdu
~ O BUTTON
S BUTTON
v
< >
.
PragmaDev Studio V6.0

Page 41

Tuioriul modeling and testing tools

Change their display value in the central panel and their widget name in the right panel
in order to recognize them:

PragmaDev Studic - Prototyping GUI "GULrdu" (modified) — O had
File Edit Windows Help
Triggers sbo. @ L a5 Widget output actions
aGULrdu *GUlLrdu
A
< Calllohn
OLED
Call John
Hang up
v
< >

Let’s say that when the user clicks on the "Call John" button, the GUI sends an sCall
message with parameter set to "2". Select the CallJohn widget on the right panel and
right click:

Widget output actions

¥ GULrdu
O Hanglp

Add sBusy output action
Add sCallConf output action
Add sCnxConf output action
Add sCnxReq output action
Add sDisConf output action
Add sDisReq output action
Add sError output action
Add sGetld output action
Add sHangUp output action
Add sHangUpConf output action
Add sld output action

Add sReady output action

All the available messages in the system are then listed. Select sCall and expand the
created sub-tree. The parameters are listed with their corresponding type:

PragmaDev Studio V6.0 Page 42

Tuioriul modeling and testing tools

Widget output actions

*GUlLrdu

i Calllohn|
I—VSCaII

@ param1|=PhoneNumberType
<HangUp
O LED

Let’s say the parameter value is 2’ and let’s send sHangUp without any parameter when
clicking on Hangup:

Widget output actions

wGULrdu
¥ Calllohn
< Call
Oparaml|=2

I—VsHangUp
Lo
OLED

On the left panel now, we will add a new trigger. A trigger performs some action on
the widgets whenever a message is sent out of the system. Select the top of the tree and
right click to get a list of all the possible triggers:

Triggers

Add sBusy trigger
Add sCall trigger
Add sCrnxConf trigger
Add sCnxReq trigger
Add sDisConf trigger
Add sDisReq trigger
Add sError trigger
Add sGetld trigger
Add sHangUp trigger
Add sHangUpConf trigger
Add sld trigger

Add sReady trigger

Let’s add the sCallConf trigger. When a trigger is received by the GUI, a case with a
set of filters is verified. Let’s add a new case:

Triggers
wGUlLrdu
L

e sCall—=
Delete trigger

In our case we won’t put any filter, we will just change the color of the LED:

Triggers
wGUlrdu
wsCallConf
Ned Adld filter

Delete case ‘

Add GUI action * Calllohn
HangUp
LED

PragmaDev Studio V6.0 Page 43

Tutorial

modeling and testing tools

The default action is DISPLAY; you’ll have to right click on it to change it to CHANGE_ -
COLOR. The node in the tree under the action specifies the new color for the widget. It
is possible to directly name the basic colors, otherwise the RGB hexa code can be used

(e.g #FF8000 is). Let’s put the LED back to red when we receive a HangUp
confirmation and we're done:

PragmaDev Studio - Prototyping GUI "GULrdu” (modified)

- O x
File Edit Windows Help
B ks @ 2 0K
Triggers e, @ L o Widget output actions
iUlLrdu * GUlLrdu
wsCallConf A w Calllchn
w[Mew case wsCall
w|ED Cparaml|=2
< CHANGE_COLOR
O green I—VsHangUp
*sHangUpConf I—o
wMew case call John CLED
v ED
< CHANGE_COLOR
G e

3.5.2 Simulation

Let’s start the Simulator again and click on the Start prototyping GUI quick button: EH
The GUI will start and connect automatically to the system:

GUlLrdu - X

Call John

Hang up

PragmaDev Studio V6.0 Page 44

H .
Tuiorlﬂl modeling and testing tools

Start an MSC trace and run the system. Click on the "Call John" button, that should send

the sCall message with parameter value set to 2, the sCallConf should be received by
the GUI, and the LED should be set to green:

GUlrdu — X

Call John

In practice, this is not a good example because there are a lot of different pLocal pro-
cesses that could receive the messages sent by the GUI so the receiver is randomly se-
lected.

For a more advanced GUI, please have a look at the AccessControl system in the Spec-
ifier example directory.

3.6 Conclusion

During this tutorial we have been through:
e SDL,
» Project manager,
« SDL architecture & behavioral editors,
« MSC editor,
SDL simulation including three stepping modes:
— SDL code line,
— SDL event,
— transition,

« Conformance checking,

« Prototyping GUI.
As a result, you saw that SDL is perfectly suited to describe high-level specifications
for real time systems. Its complete description covering architecture, behavior and ab-
stract data types allows you to fully describe your system independently from the target
implementation such as the processor, the RTOS or even the implementation language.

The following chapter will explore some PragmaDev Studio specific features such as
testing and code generation.

PragmaDev Studio V6.0 Page 45

H .
Tuiorlul modeling and testing tools

4 PragmaDev Studio

This chapter follows the PragmaDev Specifier Tutorial part. Please follow the previous
chapter before continuing.

4.1 Testing

PragmaDev Studio supports TTCN-3 standard testing language for edition and simu-
lation. We will build up a small test case and run it on the phone system we have just
designed. Let’s add a TTCN-3 compoment to the project (category Testing / Validation
in the Add child element dialog) and name it TestPhone:

PragmaDev Studio - Project "phone.rdp” (modified) - O had

Studic Project Edit View Element Generation Validation Windows Help

E & B B ;6 %

normal
busy
Phone
GULrdu
TestPhonetten3

4.1.1 Test case

The text editor recognizes the TTCN-3 syntax so all the keyword will be highlighted.
Here is the test suite we will explain in the following paragraphs:

PragmaDev Studio V6.0 Page 46

PRAGMADEYV

Tutorial modeling and testing tools

5 PragmaDev Studio - Text files — O *
File Edit Search View Preferences Windows Help «
o = i b -
o & He R o iEXKE
J 3 TestPhonettcn3

] e module TestPhone {

i%%;
> B

// Data types
type integer PhoneNumberType (1..5)

[

B // The messages

7 e type record sCall {

8 PhoneMumberType paraml
q

10 type enumerated sHangUp { e_sHangUp }

11 type enumerated sBusy { e_sBusy }

12 type enumerated sCallConf { e_sCallConf }
13 type enumerated sHangUpConf { e_sHangUpConf }
14 type enumerated sReady { e_sReady }

16 // The ports

17 & type port cEnvlLocal_type message {
18 out sCall;

19 out sHangUp;

20 in sBusy;

21 in sCallConf;

22 in sHangUpConf

23 1

25 & type port cEnvCentral_type message {
26 in sReady

] // The SUT - System Under Test

0 e type component Phone {

1 port cEnvlLocal_type cEnvLocal;

2 port cEnvCentral_type cEnvCentral;
3 EH

// Templates definitions
template sReady SystemIsReady
7 template sCallConf CallConf
5] template sBusy Busy

9 template sCall John

?;
?;
?;
{ paraml := 2 };

41 // the test cases
42 testcase tc_calllohn() runs on Phone

44 cEnvCentral.receive(SystemIsReady);
cEnvLocal.send(John) ;
alt

7 e
48 [1cEnvLocal.receive(CallConf)
49 e
50 setverdict(pass);
52 [IcEnvLocal.receive(Busy)
53 e
54 setverdict(fail);
55 1
1
}
// The control part
e control{
var verdicttype verdictl;
verdictl := execute(tc_calllohn());
o } W
EN\Tmp'\LyX_Tutorial\Dec\Models\SpecifierTuterial\TestPhonettcn3 line 1 col 0 0 selected 22 bytes

To see a MSC representation of the TTCN-3 tescase behaviour, click on the View graphical

representation button: ii'

PragmaDev Studio V6.0 Page 47

PRAGMADEYV

Tutorial modeling and testing tools

i PragmaDev Studio *

Functions and testcases to generate:

E control

tc_calllohn

Gance

You can select the functions and test cases you wish to visualise. In our simple case we
will generate everything:

PragmaDev Studio V6.0 Page 48

Tuforiul modeling and testing tools

PragmaDev Studio - MSC Diagrams — O *

Diagram Edit Search View Export Windows Help
B o= & Py e o BB A | S |
tc_calllohn

‘o | e

e

»

tc_calllohn cEnvLocal cEnvCentral
System ﬁBeadyaﬂ’*"'Fppﬂdd

ohn

alt

Callc

&

Bus

This MSC representation is not editable.

Since TTCN aims at testing complex systems, it is strongly structured. We first need
to define the data types we will be using in our test case, define the interfaces with the
system, and the value templates that will be exchanged.

4.1.1.1 Declarations

The messages exchanged between the system and the environment are the ones listed
in the channels connect to the frame of the system. Most of the message exchanged
with the system have no parameters except sCall. sCall takes an integer sub-type as a
parameter we will re-define here:

PragmaDev Studio V6.0

Page 49

H .
Tuiorlﬂl modeling and testing tools

// Data types
type integer PhoneNumberType (1..5)

There is no message or signal specific type in TTCN: if the message has parameters it is
defined as a record, and if it has no parameters, it is defined as an enumerated with a
single possible value. Just as in symbols, skeletons for all kinds of declarations can be
inserted in the TTCN file via the contextual menu, submenu 'Insert declaration’, then
the declaration kind:

« "enumerated’ type (enum)" for enumerated types;
« "record’ type (struct)" for records.
Here are the TTCN declarations to create:

// The messages
type record sCall {
PhoneNumberType paraml

}
type enumerated sHangUp { e sHangUp }
type enumerated sBusy { e sBusy }

type enumerated sCallConf { e sCallConf }
type enumerated sHangUpConf { e sHangUpConf }
type enumerated sReady { e sReady }

4.1.1.2 Ports

TTCN-3 can test asynchronous systems, synchronous systems, or a combination of
both. In our tutorial example only asynchronous messages are exchanged with the sys-
tem. We will define a port for each channel in the system representing the 2 interfaces:

// The ports
type port cEnvLocal type message {
out sCall;
out sHangUp;
in sBusy;
in sCallConf;
in sHangUpConf

}

type port cEnvCentral type message {
in sReady

}

Just as for other declarations, a skeleton for a port type can be inserted via the contex-
tual menu, then "Insert declaration", then "Port type for asynchronous messages".

We will now define the component we will be testing, that is the system itself. The name
of the component must be the name of the SDL system.

PragmaDev Studio V6.0 Page 50

H .
Tuiorlﬂl modeling and testing tools

// The SUT - System Under Test

type component Phone {
port cEnvLocal type cEnvLocal;
port cEnvCentral type cEnvCentral;

};

A skeleton for a component type definition can be inserted via the contextual menu,
then "Insert declaration", then "Component type".

4.1.1.3 Templates

When exchanging messages with the system, the values of the parameters of the mes-
sages must be pre-defined. These values are called templates. Templates are used to
both:

« define the values of the outgoing messages parameters,
« to verify the values of the received messages parameters are correct.
In our phone example, the messages coming from the system do not have any parame-

ter, only the sCall message has one parameter. Still we need to define templates for all
the message we will exchange with the system.

// Templates definitions

template sReady SystemIsReady ?;
template sCallConf CallConf ?;
template sBusy Busy = 7;
template sCall John {

paraml := 2 };

The John template will set the parameter of sCall to '2’.

4.1.1.4 Core test case

The core test case is the execution part, the scenario itself. To make it simple, we will
first wait until the system sends the ready message on the cEnvCentral port, then we
will call John and wait for the answer. An alternative is created: the call is confirmed
and we will consider the test pass, or John is busy and we will consider the test fail:

// the test cases
testcase tc calldohn() runs on Phone
{
cEnvCentral.receive(SystemIsReady);
cEnvLocal.send(John);
alt
{

[JcEnvLocal.receive(CallConf)

{

setverdict(pass);

PragmaDev Studio V6.0 Page 51

H .
Tuiorlﬂl modeling and testing tools

}

[1cEnvLocal. receive(Busy)
{
setverdict(fail);
}
}
}

A skeleton for a testcase definition can be inserted via the contextual menu, then "Insert
declaration"”, then "Testcase". Note that the skeleton will also include a "system" clause
that we are not using here, so it can just be deleted.

For the testcase body, it is also possible to insert a skeleton for the ’alt’ block using the
contextual menu, then "Insert statement"”, then "alt’ statement”.

4.1.1.5 Control part

The control part is what will be executed, this is where you combine which test case you
would like to run on the system. Please note there might be a different verdict for each
test case. This won'’t stop the execution of the control part. In our tiny example we will
just run the unique control part we wrote:

// The control part

control{

var verdicttype verdictl;

verdictl := execute(tc callJohn());
}

We’re done with our test case, let’s now run the test on the system and see what it does.

4.1.2 Simulation against the SDL system

Select the test suite in the project manager and click on the Execute button. In addition
to the PragmaDev Simulator, the following window will open:

PragmaDev Studio V6.0 Page 52

PRAGMADEV

Tuforial modeling and testing tools
i Execute TTCN testcases — O s
Modules:
oL Testcase Verdict Date Haour

control part

tc_calllohn none aefeef--

[] Reset system before each testcase execution

Run Stop Load context

Please note it is possible to set breakpoints in the test case as well as in the SDL system.

Start an MSC trace, select the control part, and Run. The scenario will execute by itself
and the verdict is displayed in the shell and in the MSC trace:

PragmaDev Studio V6.0 Page 53

PRAGMADEYV

ial deli d i \
Tutoria modeling and testing tools
I MSC Tracer — u] %
Trace View Windows Help
o= Pl L
) <New 1>
pCentral pLocal pLocal pLocal pLocal pLocal TestPhone
(2) (3) 4) (5) (6) (7 m

8 < -

¢} _\\

0 1dle w

o \)

(] /

5] ﬂm/ Connecting

. /

] \

9 4 Connected > \ﬂ%

ﬂ \

]

0 c ted © JlConf

(]

setverdict(pass)
¢}
== == == == == == v

Tracing < >

Because there are several instances of pLocal, it might happen that one of them calls
itself during the test case, causing it to fail. In that case, run the scenario again for the

test to pass.

PragmaDev Studio V6.0

Page 54

Tutorial

modeling and testing tools

4.2 Code generation

4.2.1 Code generation options

It is possible to generate C code out of the SDL system in order to implement it on a
real target. For this chapter, we will use our host computer as a target, and for that we
will need a compatible debugger. MinGW is automatically installed on Windows and
a compatible gdb version for Linux is available in the distribution. Please refer to the

installation manual for further information.
The generation profiles are listed in Generation/ Options...

Generation options

Profiles:

2 2 - Code gen. Build Debug/trace
Simulation options

General options
Destination directory: Vodels\SpecifierTuterialiccg
Code templates dir.: S{RTDS_HOME}sharelccg'\windows
First signal nurn.: 1

Data allocation: Static ~

Generate all ASN.1 declarations in only one file: []

SDL-RT/SDL specific options

Language: C |~
Gen. code coverage info.: O
Operators implemented in C

Case-sensitive: O

Declaration header file prefix:
Generated constants prefi:
Prefix enum value names w. type name:]

Generated operator functions prefix:

Generate environment process: |:|
Communicate with env. via macros:

Generate ASN.1 codecs for env. messages: [

[] Partial code generation:

+ - Rename...

Cancel

Import...

[m| X
Option wizard...
A~
Browse...
Browse...
Browse
Erowse ©
Export...

The directory where the C files will be generated is automatically set to the ccg subdirec-
tory under the project directory. Now we’ll use the Option wizard... to quickly create a

valid profile such as described below:

Generation options wizard *
Select your platform: | Windows v
Select your RTOS: Windows ~
Select your debugger: | MinGW v

Use C++ compiler: (|
For new preprocessor/compiler/linker options:
(O Append to existing ones

(®) Replace existing ones

Cancel

PragmaDev Studio V6.0

Page 55

Tutorial

PRAGMADEYV

modeling and testing tools

Generation options

Profiles:

Codegen. Build Debugftrace

Simulatien options
General options

Destination directory:

First signal num.: 1

Generate all ASN.1 declarations in only one file: []

SDL-RT/SDL specific options

Gen. code coverage info.: (]

Wodels\SpecifierTuterialiccg Browse...

Code templates dir.: S{RTDS_HOME}\share\ccglwindows

Data allocation: Static

Language: C |~

- [m] et

Option wizard..,

Browse...

Operators implemented in C:

Case-sensitive: O
Declaration header file prefix:

Generated constants prefix:

Prefix enum value names w, type name:]

Generated operator functions prefix:

Generate environment process:

Communicate with env. via macros:

OF [~

Generate ASM.1 codecs for env. messages:

[] Partial code generation:

File containing all process names:

File containing all message names:
+ - Rename...

Erowse

Erowse ©

- Cﬂ n CEI

Import... Export...

Make sure the "Generate environment process" box is checked.

PragmaDev Studio V6.0

Page 56

Tutorial

PRAGMADEYV

modeling and testing tools

E Generation options

Profiles:

Code gen. Build Debugftrace

Generate makefile

Command :

Options:

- [m] et

Preprocessor: || |

Compiler: |mingw32-gcc |

Linker:

Additional files to link :

S{RTDS_HOME}/share/3rdparty/MinGW/lib/libws2_32.2

H Browse... || Add H Remove |

[Include external makefile |

H Browse... |

Do build

Before build command : |

Exefoptions:

Target:

Add'l args:

Build command : |mingw32-make ||

H Options... |

After build command : |

+ - Rename...

@ Generation options

Profiles:

Code gen. Build Debug/trace
Debug
O% MNone
(O MSC Tracer
(O Standalone prototyping GUI runner
@ Debugger:

Debug environment : | MinGW .

Debugger command : | gdb -nw

Startup commands: |set new-consols no
set schedule-multiple on
get scheduler-locking off

(O Deployment simulator:

Simulator command : |

Socket connection to target
Available:

Host IP address: | This host
Socket port num. : l:l

[] Back trace support

Max. number of events : |'\6

Size for message data : |32

+ - Rename...

PragmaDev Studio V6.0

Page 57

H .
Tuiorlul modeling and testing tools

4.2.2 Graphical debugging

Once the SDL debug profile is properly defined select the SDL system in the Project

manager and click on the Execute quick button in the tool bar: %~

Since several execution profiles are defined, a window pops up asking for the profile
you want to use:

Code generation .. X

Choose profile to use:

Code gen.
Simulation options

[[] Set as default options

oK Cancel

Select C code generation and click Ok. The code will be generated, compiled, and the
debugger will be started automatically

Generation/build for Phone with Code gen. - o X
"e\tmp\lyx_tutorisl\doc\models\specifiertutorialiccg\pLocal.c” T - o - - . ~
mingw32-gee -DRTDS | FORMATTRACE * 1" project|03_release\sharel ceghwindows” -I'E/Project/03 cghtrac e -"Ey/Project/03_ cg\common" -g -DRTDS_SIMULATOR -DRTDS_CHD_INTERPRETER
"E:/Project/05_R : e\t fyx d " DRTDS SOCKET P ADDRESS=127.00,1 -DRTDS SOCKET PORT-A3250 -« -o'RTDS_utlity functions.”
mp\\yx_tutnna\\dnt\mnde\s\spEnﬁenumna\\(:g\RTDS utility_functions.c”
mingw32-gcc -DRTDS_FORMAT TRACE 1" -\"E\pmje:(\DSjeleasE\sharE\((g\wmduws" =I"E:/Project/05_F gtra " -1"E:/Project/05_| cg\common"” -g -DRTDS_SIMULATOR -DRTDS_CMD_INTERPRETER
/Project/05 | e\ tmph " -DRTDS_SOCKET_IP_ADDRESS=127.0.0.1 -DRTDS_SOCKET_PORT=48250 -c -0 "RTDS Envio”

:\projecti05 re\Ease\sharE\c:g\wmduws\RTDS Envc"

mingw32-gcc -DRTDS_FORMAT_TRACE -1 e:\project\05_release\share\ccgiwindows” -1"E:/Project/05_f Project/05_ cg\common” -g -DRTDS_SIMULATOR -DRTDS_CMD_INTERPRETER
-I"E:/Project/05_| cg\tras " -"e\tmphhyx_t " 'DRTDS SUCKET IP_ADDRESS=127.0.0.1 DRTDS SOCKET_PORT=49250 -c -o "RTDS_Start.o"

" e/\tmpilyx_tutoriahdocimodels\specifiertutorialiccg\RTDS ot

mingw32-gee -DRTDS_FORMAT_TRACE -I"." -I"&\project\03_ rEIeasE\sharE\ccg\wmdwws" ~I"E:/Project/03_f " 1" Ey/Project/03_ cg\common’ -g -DRTDS_SIMULATOR -DRTDS_CMD_INTERPRETER
I"E:/Project/03_ < :\tmphlyx etutorial” DRTDS SOCKET IP ADDRESS=137:0.1 -DRTDS. SOCKET] BORTR48250 ¢ -0 "pCentral.o”
mpAlyx_tutoriahdecimodels\specifiertutorialiceg\pCentral.c
mingw32-gee -DRTDS | FGRMATTRACE 11" -I" &\ project\05_release\share\ ccgwindows" -I"E:/Project/05 | gitra: " 1"E;/Project/05._ cg\common® -g -DRTDS_SIMULATOR -DRTDS_CMD_INTERPRETER
"E:/Project/05_| " e\l " -DRTDS_SOCKET_IP_ADDRESS=127.0.0.1 -DRTDS_SOCKET_PORT=49250 -c -0 "RTDS String.o”

mpfy_t tutw\a\\duc\mude\s\spEmﬁertu(una\\ug\RTDS String.c"

ing32-ge DRTDS FORMAT TRACE - 1 E\pmjezt\DS_release\share\ug\wmdnws"r\“E‘/PmJEztr'DS_ gitra fProject/05_| cg\common” -g -DRTDS_SIMULATOR -DRTDS_CMD_INTERPRETER

1"E;/Project/05 *e\tmphly_t " -DRTDS_SOCKET_IP, ADDRESS mnm ~DRTDS_SOCKET_PORT=42250 -c -0 "RTDS_05.0"

"e\project|05 re\ease\share\czg\wmdnw&\RTDS os.c’

mingw32-gec -DRTDS_FORMAT. TRACE \" \project\03. rEIeasE\sharE\ccg\wmduws ~"Ey/Project/05_f gitra " 1" Ey/Project/03_ cg\common" -g -DRTDS_SIMULATOR -DRTDS_CMD_INTERPRETER
, ifiertutorial” -DRTDS_SOCKET_IP_ADDRESS=127

-I"E:/Project/05_ "DRTDS SOCKET PORT=43250 ¢ -8 'RTDS TCP.Cliento”

"\project05 ve\ease\share\z:g\wmdnws\RTDS TCP_Client.c"

mingw32-gcc -DRTDS_FORMAT_TRACE -I"." -I"e:\project\05_release\share\ccg\windows" -1"E:/Project/05_f " -1"E:/Project/05_| cg\common" -g -DRTDS_SIMULATOR -DRTDS_CMD_INTERPRETER
-I"E:/Project/05_| cg\tras " =l"e\tmph hyx_t " -DRTDS SOCKET IP_ADDRESS=127.0.0.1 -DRTDS_SOCKET | DORT 49250 -c -¢ "RTDS_Cmdinterpreter.o”

"E:/Project/05 | cgitra RTDS_C: g

mingw32-gcc -DRTDS_FORMAT_TRACE -I* e\project\05_release\share\ccgiwindows” -1"E:/Project/05_f g\tra " -1"E:/Project/05_| cg\common” -g -DRTDS_SIMULATOR -DRTDS_CMD_INTERPRETER
-I"E:/Project/05_| cg\tra " e\ tmphlyx_t " -DRTDS_SOCKET_IP_ADDRESS=127.0.0.1 -DRTDS_SOCKET_PORT=49250 -¢ -¢ "RTDS_FormatTrace.0”

"E:/Project/05_| g\tra RTDS_F

mingw32-gcc -0 "Phone.exe” RTDS_encdecMsgData.o plocal.o RTDS_utility functions.o RTDS_Env.o RTDS_Start.o pCentral.o RTDS String.o RTDS_OS.0 RTDS_TCP_Client.o RTDS_Cmdinterpreter.o RTDS_FermatTrace.o
E:/Project/05_Release/share/3rdparty/MinGW/ lib/libws2_32.a
=22 Done.

Close Re-compile » |Save dialog text as.

The debugger interface looks pretty much like the simulator one:

PragmaDev Studio V6.0 Page 58

Tutorial

PRAGMADEYV

modeling and testing tools

15 PragmaDev Debugger - O *
Debugger Options View Run Trace Environment Windows Help «
B Lk Uiz o e ey u izl e b o
Mame Pric SDL id RTOSid M SDL-RTstate System state Watches:
Name Type Value
Timers: Semaphores:
Owner Mame Time left Mame Id. seiedi=
Mame Type Value
System time: 0
PragmaDev Studio shell
=Free run off.
Debugger state: STOPPED lActiva thread:

Click on the Start MSC trace quick button: Tl

An MSC Tracer window appears. Let’s start the system; click on 'run’ quick button: %

The MSC Trace will look like the one below:

PragmaDev Studio V6.0

Page 59

] .
Tui‘or'ul modeling and testing tools
MSC Tracer X
Trace View Windows Help
L= - g L L
<New 1>
pCentral RTDS_Env pLocal pLocal pLocal pLocal
(ex6b1538) (0x6b15d8) (oxsb2fds) (0x6b30a8) (&x6b3178) (0x6b3248)
pCentral RTDS_Env
(Bx6b1530) (Bx6b15d8)
77777777777777777 pLocal
= % (oxBb2fda)
_____________________________ pLocal
3 % (ex6b30a8) ‘
__ pLocal
e "{ (0x6b3178) ‘
77 pLocal
78 >{ (ox6b3248)
__ » pLocal
= (Bx6b3318)
125
140 Idle
sReady
17 RTDS_Idle b
187
234 Idle
250 £ Idle >
265 £ Idle b
281 < Idle >
312 < Idle)3
]]]]]]
Tracing < >

Click on the Stop button to break execution: -
The SDL debugger window shows the list of processes with their names, priority, pro-
cess id, queue id, number of messages in their respective message queues, SDL internal
state as we defined in the diagrams, and the RTOS internal system state if available.

PragmaDev Studio V6.0

Page 60

PRAGMADEV

11Jt‘)|'i¢1| modeling and testing tools
15 PragmaDev Debugger - O *
Debugger Options View Run Trace Environment Windows Help «
B2 I1r ez o ey widiHer <
Mame Pric SDL id RTOSid M SDL-RTstate System state Watches:
RTDS.Env 0 Ox6b15d3 0x5d0 0 RTDS.Idle N/A Name Type Value
pCentral 0 (x6b1530 0x740 0 ldle N/A
plocal 0 Ox6b2fdd Oxla24 0 ldle N/A
plocal 0 (x6b30ad Ox1b22 0 ldle N/A
plocal 0 (x6b3173 Ox1b6ec 0 ldle N/A
plocal 0 (x6b3248 0xc70 0 ldle N/A
plocal 0 (x6b3318 013530 0 ldle N/A
Timers: Semaphores:
Owner Mame Time left Mame Id. seiedi=
Mame Type Value

System time: 129062

Slanh PUENLIGLIDAULLOZE) Hds LEliyeu LU S Ldle LULle dl. 1940 LILRS
=Task RTDS_Env(ex6b15d8) has changed to state RTDS_Idle at: 171 ticks
=Message: sReady uniqueId: 1 received by: RTDS_Env(0x6bl5d8) at: 187 ticks
=Task pLocal(ox6b2fd8) has changed to state Idle at: 234 ticks

=Task plLocal(0x6b3178) has changed to state Idle at: 250 ticks

=Task plLocal(0x6b3248) has changed to state Idle at: 265 ticks

>Task pLocal(0x6b3318) has changed to state Idle at: 281 ticks

=Task pLocal(@x6b30a8) has changed to state Idle at: 312 ticks

>stop

Debugger state: STOPPED lActiva thread: 0x13ac->Unknown

As with the SDL Simulator, it is possible to set breakpoints, view the value of variables,
send messages... Would you like to know more about graphical debugging of C code,
we strongly suggest to go through the PragmaDev Developer tutorial as the debugging
features are the same.

PragmaDev Studio V6.0 Page 61

H .
Tuiorlul modeling and testing tools

4.3 Validation

Since SDL is formal, executable and non-ambiguous, it allows for powerful validation
techniques that can theoretically prove that the system never causes any problem and
even does what it’s supposed to do.

The most common verification technique is exhaustive exploration, which will execute
all possible paths in the system to look for errors, and can at the same time verify prop-
erties to check the semantics of the running system. But the fact that SDL systems are
usually infinite loops accepting events from their environment often causes this kind of
validation to be impossible, since there is always one more event that can be sent to the
running system.

To solve this issue, PragmaDev Studio introduces a way to define limitations on the ex-
ploration, allowing to consider only what’s relevant in the system and to avoid exploring
branches that are not interesting.

SDL validation uses an external tool developed by ENSTA Bretagne called Object Based
Porver, or OBP. OBP actually collaborates with PragmaDev Studio for the exploration
of models: it defines what transitions will execute in the SDL system, but the actual
transition execution is performed by Studio. This allows to have an execution semantics
that is exactly the one used in the tool. Each time a transition is executed, the whole
state of the system including all the running instances with their state and their variable
values are sent over to OBP, which keeps track of everything it has already explored.

What is sent to OBP from Studio is controlled via an exploration profile. A project
can contain several of these. They can be defined by selecting the "[OBP] Exploration
profiles..." in the "Validation menu" of the project manager:

PragmaDev Studio - Project "phone.rdp” — O *

Studic Project Edit View Element Generation Validation Windows Help

Bl EE e |

[OBP] Run exploration...

Check system against M5C scenarios...
= [§ phonerdp Generate TTCN from MSC scenarios...

normal

b

GUlLrdu

TestPhone.tten3

This opens the following window, showing a default profile with all options to their
default value:

PragmaDev Studio V6.0 Page 62

Tuioriul modeling and testing tools

OBP exploration profiles *
Profiles: Options Messages Variables
m Message queues: One queue per instance ~
Initial transitions: As other transitions ~
Continuous signals: | Check everything ~
Internal transitions: | Check everything ~
I+ =) Rename...

The options in the profile are divided in 3 categories, with one tab in the dialog for each
one of them:

« "Options" are the exploration options. They allow to control how message queues
are handled and the priorities for special kind of transitions;

« "Messages" allow to define restrictions on messages coming from the environ-
ment, in terms of number of messages and values for their parameters;

« "Variables" allow to define restrictions on the variables appearing in the pro-
cesses, especially if they are relevant in the system state sent to OBP or not.

Let’s define an exploration profile for our system. First, we will limit the exploration
options to how the execution works in the SDL simulator:

OBP exploration profiles *
Prafiles: Options Messages Variables
m Message queues: Single queue for whole system ~
Initial transitions: Pricritary ~
Continuous signals: | Check everything ~
Internal transitions: | Prioritary over external ones ~
L+ (=) Rename...

The simulator uses a single system queue for all messages so that’s what we’ll be using
here. We also asked for the initial transitions for all processes to have priority over
all other ones, and to execute all internal transitions before considering any messsage
coming from the environment. These options shouldn’t have any significant impact on

PragmaDev Studio V6.0 Page 63

Tuioriul modeling and testing tools

how the system is executed, and they will limit significantly the number of explored
states.

Second, let’s define some constraints on the incoming messages:

OBP exploration profiles X

Profiles: Options Messages Variables

Defauit _________| sCall

Limit number of incoming messages to: |5
param1 (PhoneNumberType) 2]
sHangUp

Limit number of incoming messages to:

i+ =) Rename...

Here, we limit the number of "sCall" messages sent from the environment to the system
to 5. Considering that there are 5 instances of pLocal, this looks like a good value for
testing. Also, since all instances of pLocal play the same role in the system, testing all
possible values for the called number is not very interesting, so we’ll be using only the
value 2.

Note that limiting the number of sHangUp messages is not needed: during exploration,
a message is sent from the environment to the system only if the instance that will re-
ceive it is actually in a state where it will treat the message. Since this messsage is ig-
nored by pLocal instances that are not connected to another instance, there’s no point
in limiting it.

Last, we’ll define which variables will appear in the system state sent to OBP:

OBP exploration profiles x

Profiles: Options Messages Variables

M_ pCentral
index (INTEGER) Ma ~
offspring (PIDY) No ~
plocals (pLocalArray) | Yes ~
parent (PID) Mo ~
sender (PIDY Mo ~

plocal

calledMumber (Integer) Mo ~
offspring (PID) Mo ~
parent (PIDY) Mo ~
remotePld (PIDY) Mo ~
sender (PIDY) Mo ~

I+ =) Rename...
Cancel

PragmaDev Studio V6.0 Page 64

Tutorial

modeling and testing tools

The built-in variables "offspring", "parent" and "sender" are either not used, or their
usage is limited to the current transition in both processes, so they do not need to appear
in the system state, as they have no impact on how transitions will be executed. In
pCentral, the variable "index" also has no impact on transition execution: it is only
used as a loop variable in the start transition, and locally in the Idle / sGetld transition:
once the transition is over, the value of "index" is not significant. So all these variables

are excluded from the system state.

Validate the exploration profile with "OK", then let’s select the system in the project

manager and run an exploration:

PragmaDev Studio - Project "phone.rdp”

E & & & M8 %l

= [phonerdp
normal

busy

GUlrdu

TestPhone.tten3

Studioc Project Edit View Element Generation Validation Windows Help

[OBP] Exploration profiles..,
[DBP] Run exploration...

Check system against M5C scenarios...
Generate TTCN from M5C scenarios...

B = Phone

A first dialog appears, allowing to select the validation profile and the kind of explo-

ration to run:

Select OBP exploration profile
Defauit | Message queues:
Initial transitions:
Continuous signals:

Internal transitions:

Y% Rename...

Exploration kind: | Full exploration

Profiles: Options Messages Variables

Single queue for whole system
Pricritary
Check everything

Prioritary over external ones

Cancel

Let’s run a full exploration first. The OBP progress dialog appears and the exploration

starts:

PragmaDev Studio V6.0

Page 65

Tutorial

modeling and testing tools

OBP Exploration

Status: RUNNING

Configurations: Status:
218 INCOMPLETE
OBP output:

0QBP2 version 1.0.0

BFS state-space exploration

127.0.0.1: 57285

Connecting to 127.0.0.1:57285 (attempt 1)

OBP full exploration with profile Default

% B

There can be several thousands of states to explore, so give it a little time. Once the

exploration is over, the progress dialog will show:

OBP Exploration

Status: COMPLETED

Configurations: Status:
7465 COMPLETE
OEP output:

0BP2 version 1.0.0

BFS state-space exploration

127.0.0.1: 57285

Connecting to 127.0.0.1:57285 (attempt 1)

OBP full exploration with profile Default

| I X |

This means all reachable paths in the system with the exploration profile have been
explored. We can now ask if there are parts of our system that have never been executed

by asking for the code coverage via the button -

PragmaDev Studio V6.0

Page 66

Tutorial

PRAGMADEV

modeling and testing tools

File Edi

t Windows Help

B = gk B

'ﬂ PragmaDev Studio - Code coverage results "Code... — O

>

=

=

Diagram/element

= @ pCentral

-
e ldle
= [sGetld(index)

I sGetld(index)

index >= 1 am

l:] true

sld(pLocals(ini

- -
l:]false

sError to sends

= @ plocal

-

L idle

) Connecting

W Gettingld

= -EEITOI'
K <Error

sBusy VIA cEm

o Idle
[sld(remotePld)
I Connected
I Disconnecting

Hits
) - 1083

1-6
0-1083
0-1083
1083
1083
1083
1083

1083

- 2275

(A - =]

83-2275
83-1682

=]

) - 1083

L= T]

1083
162 - 697
165

Covering testcase

(0 covering testcases)

(0 covering testcases)
(0 covering testcases)
(0 covering testcases)
(0 covering testcases)
(0 covering testcases)
(0 covering testcases)
(0 covering testcases)
(0 covering testcases)

(0 covering testcases)

(0 covering testcases)

(0 covering testcases)
(0 covering testcases)
(0 covering testcases)
(0 covering testcases)

(0 covering testcases)

<

Total coverage: 88%

The symbols that were never executed are shown in red with a minimum count of o.
Here, we can see that the case where the phone number is incorrect in pCentral is never
executed, and looking at how the system is defined, it will indeed never be: the parame-
ter to the message "sGetId" is a PhoneNumberType, which is constrained to be between
1and NUM_PHONE, so the decision will always select its "true" branch. So the "false"
branch is never selected, the message sError never sent, and therefore never received

in pLocal either.

Let’s close everything and run another kind of exploration with the same profile:

PragmaDev Studio V6.0

Page 67

Tuioriul modeling and testing tools

Select OBP exploration profile *
Prafiles: Options Messages Variables
m Message queues: Single queue for whole system
Initial transitions: Prioritary

Continuous signals: | Check everything

Internal transitions: | Prioritary over external ones

40 &7 Rename...
550 IE L L NGl Check for deadlocks & errors v

Cancel

In this mode, OBP will try to find deadlocks in the system, i.e states where instances are
still alive, but nothing can happen because they’re all waiting for a message that cannot
be sent by any other instance. It will also detect errors in the system, for example, if
an invalid value is assigned to a variable considering the constraints on its type, or too
many instances of a process are dynamically created, and so on...

Once the dialog is validated, the progress dialog appears and the exploration starts:

OBP Exploration = O X

OBP deadlock/error analysis with profile Default
Status: RUNNING

Configurations: Status: Result:
m INCOMPLETE UNKNOWN
OEP output:

OBF2 version 1.0.0

Deadlock checking

127.0.0.1 : 50936

Connecting to 127.0.0.1:50936 (attempt 1)

A x|
. | I

At the end of the exploration, the dialog will show:

OBP Exploration - O X

OBP deadlock/error analysis with profile Default
Status: COMPLETED

Configurations: Status: Result:
1893 COMPLETE VIOLATED
OBP output:

OBFP2 version 1.0.0

Deadlock checking

127.0.0.1: 50936

Connecting to 127.0.0.1:50936 (attempt 1)

| DR O |

PragmaDev Studio V6.0 Page 68

H .
Tuiorlul modeling and testing tools

The "VIOLATED" in the "Result" field means that some problem has been found. To

show the problem, the L allows to extract a failing scenario, either as a MSC trace, or
as a scenario that can be executed back in the simulator. Let’s select the MSC trace:

MSC Tracer - [m] X

Trace View Windows Help

BErf Rl

<New 1>
pCentral pLocal pLocal pLocal pLocal pLocal RTDS_Env
(1) (2) (3) (4} (5} (6) (-1)
] e ~
2] \

] — \m.q@ an1=5})

sCn. Acting

o | | | | \ | | [o .

Tracing < >

System is dead: instances are still running but no pending messages

The zone at the bottom of the trace says: "System is dead: instances are still running
but no pending messages", so this is a deadlock: the system is in a state where nothing
can happen any more, but instances are still alive and waiting for something. By going
up the trace, we can spot what has happened:

MSC Tracer - [m] x
Trace View Windows Help

BEpp -

<New 1>

pCentral pLocal pLocal pLocal pLocal pLocal RTDS_Env
(1) (2) (3) (4) (5} (6) (-1)

’ IdIE\TNK

=] L4 Connecting EC@ Req

2]

3 sCall{{paraml=2})

Tracing < >

System is dead: instances are still running but no pending messages

The very first call was actually from one pLocal to itself, which is a case that is not
handled correctly. So the pLocal instance is stuck in its "Connecting" state, waiting for

PragmaDev Studio V6.0 Page 69

H .
Tuiorlﬂl modeling and testing tools

either "sCnxConf" or "sBusy", which will never come. After that, all other instances of
pLocal have tried to contact it by sending a "sCnxReq" message, which will never be
handled. So all instances are now stuck.

So we can see that even on a very simple system like this, validation can actually spot
issues that weren’t obvious at first sight. It can actually do much more than that, es-
pecially via properties that can be checked with the system. This is however out of the
scope of this tutorial; for more information, please refer to the example Studio/Validation
in the PragmaDev Studio distribution.

4.4 Conclusion

During this tutorial we have been through:
 Test of an SDL system,
 C code generation from an SDL system.
« Validation of the system using exhaustive simulation.

When it comes to design, the system will actually be implemented on a given target, so
additional requirements will have to be taken into account:

 Use of legacy code and/or external libraries, usually written in C with no way to
manipulate SDL’s high-level abstract data types;

« Support for additional concepts, such as semaphores or pointers, unneeded in an
SDL description, but usually required in real-time systems.

This is the aim of the SDL-RT language, which keeps the graphical description used in
SDL but introduces the missing concepts required for low-level design.

So let’s move on to the PragmaDev Developer tutorial!

PragmaDev Studio V6.0 Page 70

Tuioriﬂl modeling and testing tools

5 PragmaDev Developer Tutorial

5.1 Organization

Let’s get our hands on the tool! Start PragmaDev Developer (or PragmaDev Studio if
this will be the application you will be using).. The window that appears is called the
Project manager:

PragmaDev Studio - O x

Studiec Project Edit View Element Generation Validation Windows Help

H b= he

The Project manager window
The project manager gathers all the files needed in the project. First let’s create a new

project with the New project button: E

A window will pop up to set the project file name. Use the ‘Browse button’ to select the
project’s parent folder and file name:

PragmaDev Studio V6.0 Page 71

PRAGMADEV

Tutorial modeling and testing tools

i PragmaDev Studio *
Enter a file name for your new project:

RTDS/6.0/ Tutorial/Models/DeveloperTutorial/phone.rdp Browse

All files in the project will be stored in the project file directory by default.

Cancel

Let’s set it to "phone":

) PragmaDev Studio - Project "phone.rdp" - O *

Studic Project Edit View Element Generation Validation Windows Help

E & B & Bl

@ phonerdp

phone empty project

5.2 Requirements

Let us express the requirements of our system as MSC. To add an MSC, select the
project, and click on the right mouse button. A contextual menu will appear:

i PragmaDev Studio - Project "phone.rdp” — O X

Studio Project Edit View Element Generation Validation Windows Help

Rl

Add child element...

Add existing files...
Rename / move file..

Copy
Cut
Paste
Delete

Set default for build
Build...
Debug...

Compare with other diagram...

Add components to the project
Select Add child element and the following window will appear:

PragmaDev Studio V6.0 Page 72

Tutorial

modeling and testing tools

Add child element

Containers
Requirements
Declarations

Active architecture
Behavior

Passive architecture
Hardware architecture
Testing/Validation
Documentation
External files

[Auto-sort

Mame
File Mew
Language

Create legacy diagram

Cancel

Open

The add component window

In the Requirements category, select MSC component and click on the New button. Go
to the directory where your project is and type in "normal" with no extension. Click on
save and you will get the following window:

Add child element

Containers

Declarations

Active architecture
Behavior

Passive architecture
Hardware architecture
Testing/Validation
Documentation
External files

[Auto-sort

Requirements table

Mame: normal
File: loperTutorial/normal.rdd Mew
Language

[] Create legacy diagram

Cancel

Usecases HMSC MSC OTF

Open

Completed Add component window

Click Ok and the "normal" MSC appears in the "phone" project:

PragmaDev Studio V6.0

Page 73

PRAGMADEYV

Tutorial modeling and testing tools

) PragmaDev Studio - Project "phone.rdp" (madified) - O *

Studic Project Edit View Element Generation Validation Windows Help

AN R

_

normal

"normal” MSC in "phone" project
Double click on the MSC name or icon to open it. The MSC editor opens:

PragmaDev Studio V6.0 Page 74

torial PRAGMADEYV

modeling and testing tools

IG PragmaDev Studic - M5C Diagrams

Diagram Edit Search View Export Windows Help

L EARBRIEI c BKXBERA K
Jﬂinormal

|
o | @

.

>

...O...l

{ 3 . I = o = e &5k

The MSC editor
Draw the following to express the requirements of our phone system:

PragmaDev Studio V6.0 Page 75

Tutorial

modeling and testing tools

PragmaDev Studio - M5C Diagrams

Diagram Edit Search View

Export Windows Help

o= A) e B A B2~ 7
normal
‘o W
it
%
RTDS_Env pLocal pCentral pLocal
|- regdy
< disconnected
feoeed
call(2) ~|
getId(2) ~|
1dM
s - idMsal...)
. confeq]
fonf
e I conflon
|- callConf
< connected
+ hangUp ~
disReq ~
= disfionf
|~ hangUpConf

L]

disconnected

)

<
-

m

The "normal" MSC

This MSC basically says the following;:

« pCentral indicates the system has been initialized and is ready

« The initial global state is disconnected

 The user represented as the environment (RTDS_Env) makes a request on the first
phone pLocal to call the phone with the number 2

The first pLocal asks the central the queue id of the phone with number 2
The first pLocal uses the id to send a connect request (conReq) to the second

PragmaDev Studio V6.0

Page 76

Tutorial

modeling and testing tools

pLocal

The second pLocal being disconnected, it confirms the connection (conConf)

The first pLocal tells the environment the call has succeeded

The global system state is then considered connected

The user hangs up

The first pLocal sends a disconnection request (disReq) to the second pLocal

The second pLocal confirms disconnection (disConf) back to the first pLocal

The first pLocal tells the environment the disconnection is confirmed

The overall final state is disconnected

You can write some other MSCs to get clearer ideas on what you want to do. Note the
instances represented on the MSC can be any type of agent or semaphore. Somehow
you are roughly defining the first architectural elements. You can copy from the phone
example "normal" and "busy" MSCs in the project to complete the description.

5.3 Design

Let us now specify and design the system. As for creating an MSC, select the project
and add a C header file component:

Add child element

Containers
Requirements
Declarations

Active architecture
Behavior

Passive architecture
Hardware architecture
Testing/Validation
Documentation
External files

ASM.1file SDLPRdecl file SDL-RT decl. file C header file

MName: commen.h
File: loperTutorial/common.h New Open
Language:

Create legacy diagram

[Auto-sort
Project will be like:
PragmaDev Studio - Project "phonerdp” - O x

Studic Project Edit View Element Generation Validation Windows Help

E =& B B & x|

normal
busy

common.h

PragmaDev Studio V6.0

Page 77

Tutorial

modeling and testing tools

This header file will contain all type and macro definitions to use in the whole system.
What we need is the number of phones that will be created and a type for the phone
number. So open common.h and type its contents:

/* Number of phones to create */

#define NUM PHONE 5

Now, let us actually design the system itself. Select the project and add a System com-
ponent. Make sure to select SDL-RT as the language for the system:

Add child element

Containers
Requirements
Declarations

X

E & &5 B 6 %

- - Systern . Block class
Behavior
Passive architecture
Hardware architecture Name: sPhene
Testing/Validation -
Documentation File: loperTutorial/sPhone.rdd Mew Open
External files
Language: |SJYEIH) ~
Create legacy diagram
[Aute-sort
PragmaDev Studio - Project "phonerdp” - O x
Studic Project Edit View Element Generation Validation Windows Help

Sl

normal
busy
common.h

sPhone

"phone" SDL-RT system in the "phone" project

Double click on the system name or icon to open the system diagram in the SDL-RT

editor:

PragmaDev Studio V6.0

Page 78

PRAGMADEV

Tutorial modeling and testing tools

4 PragmaDev Studio - Diagrams — O *
Diagram Edit Search View Export Windows Help

tE =B ed»ELAE A HHLOIEG |

J sPhone |

The SDL-RT editor
The system being very simple it will not require any block decomposition. The central
will be a process as well as the phones. All the phones have the same behavior so they
will be several instance of the same process. The phone system is therefore made of
two processes. For better legibility their name will be prefixed by a ’p’ because they are
processes.

Note: to draw the cSelf channel keep the shift key down and click where the channel
should break.

PragmaDev Studio V6.0 Page 79

H .
Tuiorlul modeling and testing tools

PragmaDev Studio - Diagrams — O *
Diagram Edit Search View Export Windows Help
T E = [NQ@ | @ & B A BB~ M G ad id L V|
sPhone
@ lal
| =
- =0
1 - Part. ©
% A S
| MESSAGE callishort), hangUp: I
........ 3, | MESSAGE ready, callConf, hangUpConf, busy; !
.......... | MESSAGE conReq, conConf, disReq, disConf: :
™ : MESSAGE getld(short), idMsg(RTDS_PID), errorMsg: |
| o o o e L _______ |
)]
#include "common.h” T
———<——— cEnvCentral pCentral
[ready] [1
[getId]
Lot cInternal
[1dMsqg,
errorMsgl
——e—— cEnvlocal pLocal (@, NUM_PHONE)
[callConf, [call, 1
hangUpConf, hangupl
busy] [busy,
conReq,
conConf,
disReq,
disConf]
cself
W
-« >

phone system view
Since pCentral is making the link between the pLocal processes and considering the
number of phones can be modified, pCentral will create all instances of pLocal. To
represent that, the name pLocal is followed by the initial number of instances and the
maximum number of instances. Since the maximum number of instances is defined in
common. h, we include it in a text box.

Messages to be exchanged between the processes are defined in the additional head-
ing symbol ...

 and listed in the channels . To specify the incoming and outgoing
messages in the diagram, click on the "[]" and type in between the square brackets.
The channel going to the outer frame is implicitly connected to the environment. In
the above example the channel cEnvLocal connects pLocal to the environment and
defines call and hangUp as incoming messages and callConf, busy and hangUpConf
as outgoing messages. The channel cEnvCentral connects pCentral to the environ-
ment and defines ready as an outgoing message. The cSelf channel has been created
to represent messages exchanged between the different instances of pLocal.

In the message definitions, only the messages call, getId and idMsg have parameters.
In our example process ids will be stored, so in order to design an RTOS independent

PragmaDev Studio V6.0 Page 80

Tutorial

modeling and testing tools

model the RTDS PID type will be used. During code generation this type will be mapped

to the real RTOS data type.

Select pLocal and click on the right mouse button to open the process definition, or
simply click on the ® button that appears near the symbol when hovering the mouse

pointer over it:

[idMsg,
errorMsg]
) _ L]

pLocal (8, NUM_PHONE)
[call, 1
hamath |

[busy Show usage...
conRey Properties...
conCol)

disRe: Adapt size to text

disCol Copy

Cut

Paste

Delete
Select to end

Copy traceability info.
Cover requirement(s)...

Set as text segment

Contextual menu

Since the process is not in the project it will ask if it should be added. Answer yes and
an Add child element dialog pre-filled with the process name appears. Click OK and
you end up in a new windows showing the process definition.

PragmaDev Studio V6.0

Page 81

Tuioriul modeling and testing tools

PragmaDev Studio - Behavioral Diagrams — O *
Diagram Edit Search View Export Windows Help

T B = @) o o M M G R . LA [
plocal

— Em=0
™

-

-_—

The process behavior description in SDL-RT editor

The first thing to design is the start transition. It is what the process will do as soon as
it is created. In the case of pLocal process we do nothing:

o

idle

That transition means that once the process is started it will go to state idle. Note you
can use automatic insertion in the editor: place a start symbol “*, keep it selected and
click on the state symbol in the tool bar ¥, The state symbol is automatically inserted
and connected after the start symbol.

An internal data dictionary is updated on the fly to ease the writing of the process be-

PragmaDev Studio V6.0 Page 82

M .
Tuiorlﬂl modeling and testing tools

havior. First create the idle state definition: click on the State icon and put it at the
top of your page:

The state name is in edit mode so you can directly type idle in it. Note that as soon as
you start typing, PragmaDev Developer will display a list of choices for the state name,
listing all those starting with the text you have already typed. To select one of the names,
use the up and down arrow keys to browse the list, or click on it. Here, the list has only
one entry because the idle state is the only one that has been defined so far.

Once the state has been defined, click on the input symbol ¥= in the tool bar and the
input message symbol will be automatically inserted below the state symbol. As for the
state, the list of possible messages will appear as soon as you start typing. You can also
press the F8 key to display the list of all possible messages:

| {

busy]
call

callConf

conConf

conReq

conconf

conreq

disConf

disReq

errorilsg w

Select the call message and complete it with the parameter as described below. This
facility is context sensitive and works for messages, states, semaphores, and timers.
You can now finish the state description by yourself as explained below.

Considering the requirements described earlier the pLocal process can either be asked
to make a call by the operator or receive a call from another phone. The idle state can
therefore receive two types of messages described below:

PragmaDev Studio V6.0 Page 83

H .
Tuiorlﬂl modeling and testing tools

idle

conReq |: call (phoneMumber) n:
remoteld = SENDER; getId | phoneNumber) TO MAME pCentral >
conConf TO ID SENDER >

When receiving conReq message, it will reply conConf to the conReq sender. TO ID
and SENDER are SDL-RT keywords in the output symbol. The SENDER id is stored in
remoteld variable. The process then goes to connected state.

If asked to make a call, the phone number to call needs to be retrieved. To do so, a
variable of the correct type is given as parameter of the receiving message. It will be
assigned when this message is received. Since pLocal has no idea how to address a
phone number it asks the central process the receiver queue id with the getId message.
The phoneNumber variable is re-used as is and the TO_NAME SDL-RT keyword is used to
specify the receiver. Note TO_ ID PARENT could have been used since the central process
is the current process’s parent. The process then goes to gettingId state waiting for
the central to answer. Note also that the memory allocated for phoneNumber memory
will be freed by the receiver of the getId message.

Once the queue id of the remote phone is received from central, it is first stored in a local
variable and the connection request message conReq is sent. The process then goes to
connecting state. If the pid of the receiver was not found, the errorMsg message is
received. The process tells the user (environment: TO ENV) and goes back to idle state:

gettingld :|

idMsg [remoteld) < errorbsg <

conReq TO ID remoteld > busy TO_ENV >

connecting idle

The remote process is either available and replies conConf, or not available and replies
busy:

PragmaDev Studio V6.0 Page 84

M .
Tuiorlul modeling and testing tools

connecting :|
conConf% busy |:

callConf TO_ENV > busy TO_ENV >

connected idle

Depending on the answer the resulting state is different.

Now that you have understood the basics of the finite state machine you can complete
the process behavior:

connected

conReq disReq hanglp

i
u
i

busy TO_ID SENDER> disConf TO ID SENDER > disReq TO ID remoteld >

connected

disconnecting

As the description is done, the browsing window on the right side is updated allowing to

quickly jump to a transition: just click on the transition. This is especially useful when
the system gets big.

[l
-

busy
conConf
disconnecting
disConf
gettingId
errorMsg
1dMsg
idle
call
conReq

PragmaDev Studio V6.0 Page 85

Tuioriul modeling and testing tools

Itis now time to declare variables in our process. To do so the text symbol in the process
behavior diagram is used with standard C declarations in it:

RTDS_PID remoteld = O
short phoneNumber ;

Note the types of the variables used in the input and output symbols: short for call
and getId and RTDS PID for idMsg. RTDS PID is the type for a process identifier; It is
mapped to the corresponding RTOS-dependent data type.

Let’s have a look at process pCentral now. It must do the following things:
- at startup, it creates all instances of pLocal and gives them a new phone number;

« when asked for a phone number, it sends back the queue id for the corresponding
process.

To avoid mixing the code managing the phone numbers with the code managing the
processes, let’s decide we’ll use a class associated to pCentral that will take care of the
phone numbers.

The first thing to do is to tell pCentral that it should use a class. So, let’s go back to

the project manager with the B3 quick button and let’s create a class diagram named
telephoneLibrary in the project:

Add child element X

Containers

Requirements =l
Declarations

Active architecture

Behavior

Passive architecture

Hardware architecture Name: telephoneLibrary

Testing/Validation . .
Documentation File: rial/telephonelibrary.rdd Mew Open

External files

Classes

Language:

Create legacy diagram

[Auto-sort
PragmaDev Studio - Project "phone.rdp” (modified) - O *

Studic Project Edit View Element Generation Validation Windows Help

E & O B 8 %

normal
busy
common.h
=] sPhone
plocal
E—JtelephoneLibrary

PragmaDev Studio V6.0 Page 86

Tuioriul modeling and testing tools

Double-click on the class diagram’s name to open it and let’s define a class associated
to pCentral:

PragmaDev Studio - Diagrams - O X
Diagram Edit Search View Export Windows Help

T o =Pk Q@)@ »E A BN~ 6 G s id Wl X
telephonelibrary
o ~
I 2
. =0
1 - Part. @
»
pCentral
1 | phoneId
=
PhoneNumberFactory
-

-numPhone : short
-phoneList : RTDS_PID *

+==create>>{1n maxPhone : short)
+append(in pid : RTDS_PID) : short
+getPid(in phoneNum : short) : RTDS_PID

- £ b3

In a class diagram, the process pCentral is represented as an active class with a "graph-
ical stereotype": the class symbol has bold borders and looks like a process symbol in a
block diagram. Note the symbol used is a process symbol, not a process class symbol.
That means the symbol is a direct reference to the process declared in the SDL system.

The class PhoneNumberFactory is the class we will use to manage the phone numbers.
Its interface is quite simple:

« Its constructor (named «create» in the symbol) will just initialize all internal
data, it takes the maximum number of phones to manage;

« The append method will add a new phone to be managed.

e The getPid method will return the process id for a given phone number.
The class PhoneNumberFactory will also have 2 private attributes:

« numPhone is the next available phone number;

« phonelList is a pointer on a process id. The process ids will actually be stored in
an array.
Since there will only be one instance of PhoneNumberFactory used only in pCentral,
we can make the instance a part of the process via a composition with a cardinality
set to 1. The role name phoneld will identify the instance of PhoneNumberFactory in
pCentral. That means phoneId does not need to be declared in the SDL diagram,; it is
implicitly declared.

PragmaDev Studio V6.0 Page 87

Tuioriul modeling and testing tools

To fill in the attributes and operations, you can either type the text, or select the class,
click on the right mouse button and select Properties. The symbol properties will ap-
pear in the zone at the right of the diagram editor. There, you can click the Structured

edit button, which will open a dialog allowing to add all the attributes and operations
in a graphical way:

Payload units:
PR code suffix:
Description:

t)
hort

RTDS_PID
— ./,...- \
\'»-..__ ___.-"/
Generate validation profile..
v
>
Class symbol properties X
Texts Class Attributes Operations
Operations list: Visibility:
< < create> > (short .
append(RTDS_PID) Static Guess
getPid(short)
MName:
Parameters:
Direction |Name Type Default value
it v &)
Return type:
i+ (=) \¥) (4] Properties:

Now we have our class to manage the phone numbers. Of course, it isn’t complete yet,
since we didn’t write any actual code for the methods. But its interface is fully defined,
so we can go back to our pCentral process.

Go to the system diagram phone, and double click on pCentral. Since the process is not
in the project it will ask if it should be added. Answer yes and a pre-filled save window

PragmaDev Studio V6.0 Page 88

H .
Tuiorlﬂl modeling and testing tools

with the process name appears. Click OK and the process definition window appears.
First, its initial transition:

int index = 0 1)
short phoneNumber ;

RTD5_PID pId:

index=0;

phoneld : PhoneNumbe rFactory (NUM_PHONE)

ndex < NUM PHO
(true) (fa‘Lse)
pLocal ready TO_ENV)

phoneld-=append (OFF SPRING | idle
index++

The first thing to do is to create the instance of PhoneNumberFactory we will use. This
is done via an object initialization symbol, where the instance phoneId (the name we
set in the role in the class diagram) is created as an instance of PhoneNumberFactory.
The class constructor takes the maximum number of phones to handle as a parameter.
Again, because of the association between PhoneNumberFactory and pCentral classes,
phoneId is implicitly declared in pCentral SDL behavior diagram.

Then, all instances of pLocal are created in a loop testing index < NUM PHONE. Each
time the loop is executed the pLocal process is created and its process id (OFFSPRING
keyword for the parent process) is stored in phoneId object via the append method.

After the pLocal processes creation, the ready message is sent to the environment to
indicate initialization is finished and the process goes to state idle.

non

Note we have intentionally introduced a C syntax error by forgetting ";" in the lowest
block of code to later show how to analyze the compiler errors.

PragmaDev Studio V6.0 Page 89

M .
Tuiorlﬂl modeling and testing tools

idle

getId|phoneNumber) <

onelumber < NUM PHO
(true) (fa‘l.se)

pId = phoneld-=getPid|phoneNumber) ; errorMsg TO_ID SENDER >

idMsg (pld) TO 1D SENDER> idle

idle

The only request that can be received by pCentral process is getId. The phone num-
ber to reach is the GetId parameter (phoneNumber). The process id of the phone is
extracted with the getPid method. When received, the index corresponding to the re-
ceived phone number is searched via the getPid method on the PhoneNumberFactory
instance. The answer is sent to SENDER (SDL-RT keyword in output). If the phone num-
ber is out of range, an error message is sent back to the sender.

Now, let’s go back to our class PhoneNumberFactory: we could write the .h and .cpp
files directly, but PragmaDev Studio can help. So go back to the project manager, select
the phone system, and select Generate classes code... in the Generation menu. A log
window will then list the operations made during the code generation, which should
run without errors.

Classes code generation output — O X

#£# Generating classes code... ~
--- Checking syntax/semantics for class diagram "telephonelibrary”

--- Generating header file for class "PhoneMumberFactory”

--- Generating source file for class "PhoneMumberFactory”

#2# Done.

Close Save dialog text as...

Now let’s close the log window and go back to the project manager:

PragmaDev Studio V6.0 Page 90

Tuioriul modeling and testing tools

PragmaDev Studio - Project "phone.rdp” (modified) - O *

Studic Project Edit View Element Generation Validation Windows Help

E & O B 8 %

= [& phonerdp
normal
busy
common.h
¥ sPhone

E—telephoneLibrary
+| g RTDS class sources

RTDS class sources package has been automatically created and contains C++ code
generated from the classes defined in the project.

RTDS class sources should containthe . hand . cpp files for the class PhoneNumberFactory.
Open PhoneNumberFactory.h:

PragmaDev Studio V6.0 Page 91

Tutorial

modeling and testing tools

PragmaDev Studio - Text files

File Edit Search View Preferences Windows Help «

e B gl e 0 B A B
PhoneMumberFactory.h

fifndef PHONENUMBERFACTORY H_
#define _PHONENUMBERFACTORY H_

class PhoneMumberFactory;

// Standard and common includes
#include
#include
// Includes for related classes

#include

// CLASS PhoneNumberFactory:
I

class PhoneNumberFactory

{

Jf ATTRIBUTES:
7R

private:
short numPhone;
RTDS_PID * phonelist;

// OPERATIONS:

A

public:
PhoneNumberFactory(short maxPhone);
virtual short append (RTDS_PID pid);
virtual RTDS_PID getPid(short phoneNum);

}

#endif

E:\Project2\UserDocumentation\RTDS\6.0\TutorialModels, line 1 col O

// Forward declaration (the following includes may use the class)

614 bytes

Since the file common . h has been defined at the project level, it is supposed to be needed
everywhere in the project. So it has been automatically included in the generated header
file. RTDS gen.h is a generated file containing declarations specific to the system. The
class definition then contains all attributes and operations we entered in the class dia-

gram.

Please note this header file must not be modified manually: it will be re-generated each

time a code generation is made.
Now open PhoneNumberFactory. cpp:

PragmaDev Studio V6.0

Page 92

H .
Tuiorlul modeling and testing tools

PragmaDev Studio - Text files
File Edit Search View Preferences Windows Help «

CEE e Ee e B KR | ¥

PhoneNumberFactory.cpp PhoneNumberFactoryh
Binclude a

= = R
PhoneNumberFactory
1* PhoneNumberFactory(short)
* ATTRIBUTES FOR CLASS: append (RTDS_PID)
A e e getPid (short)

*
* [From PhoneNumberFactory]
* - short numPhone;

* - RTDS_PID * phoneList;
*/

// PUBLIC OPERATIONS:
!

PhoneNumberFactory: :PhoneNumberFactory(short maxPhone)

// The following line is to prevent a non-implemented method from compiling; please delete it and add the actual method code
#error Method not implemented!
}

// Operation append:
/

short PhoneNumberFactory: :append (RTDS_PID pid)

) // The following line is to prevent a non-implemented method from compiling; please delete it and add the actual method code
#error Method not implemented!
i

// Operation getPid:
1

RTDS_PID PhoneNumberFactory::getPid(short phonehum)

{
[/ The following line is to prevent a non-implemented method from compiling; please delete it and add the actual method code
#error Method not implemented!

¥

v

EA\Project?\UserDo TDS\6.0\ D tory.cpp line 1 col 0 Oselected |979 bytes

Skeletons for the constructor and the two methods defined for PhoneNumberFactory
have been generated, all containing a "#error" precompiler directive to make sure they
won’t compile, since an implementation is now supposed to be written for them.

Note the C++ code browsing window on the right to quickly access operation defini-
tions. The generated code also includes the attributes definitions as a comment.

Now you can enter the code for the methods:

PragmaDev Studio V6.0 Page 93

Tutorial

modeling and testing tools

PragmaDev Studio - Text files

File Edit Search View Preferences Windows Help «

o @ O bY@ o BB A BB
PhoneNumberfactory.cop

#include "PhoneNumberFactory

/*
* ATTRIBUTES FOR CLASS:

* [From PhoneNumberFactory]
* - short numPhone;

* - RTDS_PID * phonelist;
*/

// PUBLIC OPERATIONS:
1/

// Operation PhoneNumberFactory:
[l mmmmmm -

numPhone = @;

}

// Operation append:
L R R R

phonelist[numPhone] = pid;
numPhone++;
return (numPhone-1};

}

// Operation getPid:
fommm

return phonelList [phoneMum];

}

PhoneNumberFactory: :PhoneNumberFactory(short maxPhone)

phonelList = (RTDS_PID *)RTDS_MALLOC (maxPhone * sizeof(RTDS_PID));

short PhoneMumberFactory::append(RTDS PID pid)

RTDS_PID PhoneNumberFactory::getPid(short phoneNum)

E\Praject?\UserDocumentation\RTDS\6.0\Tutorial\Models\DeveloperTutarial\PhoneMumberFactory.cpp line 43 col 0 0 selected 979 bytes

PhoneNumberFactory.h

=

PhoneNumberFactory
PhoneNumberFactory(short)
append (RTDS_PID)
getPid(short)

numPhone represents the next available phone number. The append method stores the
process id in the phonelList array with index numPhone.

Please note that once the . cpp file exists, it will not be overwritten by the next code
generation. So the code you've written will be kept as long as you don’t manually erase

the file.

PragmaDev Studio V6.0

Page 94

Tutorial

modeling and testing tools

5.4 Running the system

In the current release, execution and debug of the system can be done using:

 Posix and gdb integration on Linux or Solaris, or
« Win32 or FreeRTOS and MinGW integration on Windows, or

CMX RTX and Tasking Cross View Pro debugger on Windows, or
OSE and gdb debugger on Windows, or

« Wind River Tornado environment on Windows or Solaris, or

« Nucleus and gdb debugger on Windows.
It is important to understand integration is done at two different levels:
« RTOS integration

The generated code is based on C macros that are defined in the "Code template
directory” to call the corresponding RTOS system primitives. Currently there is a
directory for:

FreeRTOS,
Win3sz2,
Posix,
CMX RTX,
OSE Delta,
OSE Epsilon
ThreadX,
uITRON 3,
uITRON 4,
VxWorks,
Nucleus.

« Debugger integration

To be able to trace execution, set breakpoints and view variables, the SDL-RT
debugger is interfaced with a C debugging environment. Depending on the C de-
bugger functionalities there might be differences in the SDL-RT debugger. The
available C debugger interfaces are:

gdb (Gnu debugger)
MinGW (Minimalist GNU for Windows)
Tasking Cross View Pro

Tasking integration has one major restriction: it is not possible to send an
SDL-RT message to the running system from the debugger.

XRAY

As with Tasking integration: it is not possible to send an SDL-RT message
to the running system from the debugger.

Tornado

PragmaDev Studio V6.0 Page 95

modeling and testing tools

Tutorial

— Multi 2000

As with Tasking and XRAY integrations, it is not possible to send an SDL-RT
message to the running system from the debugger.
The rest of the tutorial will use your host environment as a target (windows or posix
integration) and gdb as a debugger. There is no need to install another tool as we will
use the ones provided in PragmaDev Studio distribution (gdb and MinGW).
Please note win32 and posix integrations use a socket to communicate with the host.
The default port set to 49250 but it can be modified in the Socket port num field of the
corresponding generation profile.

5.4.1 Generation profile

Now that the system is designed, let’s debug it with the SDL-RT debugger. To do so
we will need to generate code from the SDL-RT system. This requires to define a set of
generation options, which is done via the Generation / Options... menu:

Generation options
Profiles:

Simulation options

+ -

Rename...

Cancel

Code gen. Build Debugftrace
General options

Destination directory:

Code templates dir.:

First signal num.:

Data allocation:

EX\Project2\UserDocumentation\RTDS\6. 0\ Tutorial\Models\ DeveloperTu
S{RTDS_HOMERshare\ccgiwindows
1

Static ~

Generate all ASN.1 declarations in only one file: O

SDL-RT/SDL specific options

Language: C
Gen. code coverage info.
Case-sensitive:

Declaration header file prefix:
Generated constants prefix:

Prefix enum value names w. type name: []

Generated operator functions prefic:

O

Generate ASM.1 codecs for env. messages: [l

Generate environment process:

Communicate with env. via macros:

TTCH specific options
Generate:

Generate main function:

TTCM + SDL/SDL-R |~

Import...

[m] X

Option wizard...

~
Browse...

Browse...

Export...

Rename the default empty profile and use the Options wizard to quickly set up a work-

ing profile:

PragmaDev Studio V6.0

Page 96

H .
Tuiorlul modeling and testing tools

Generation options wizard *
Select your platform: | Windows ~
Select your RTOS: Windows ~
Select your debugger: | MinGW ~

Use C++ compiler:
For new preprocessor/compiler/linker options:
(O Append to existing cnes

®) Replace existing ones

Cancel

You'll have to check that everything is setup properly:

+ The destination directory should be set to ccg, in the project’s parent directory.
This should be the default. This directory will be created if it doesn’t exist yet, so
no need to create it explicitely.

« Since we're using C++, we checked the "Use C++ compiler” in the wizard dialog.
Make sure the compiler is actually set to "mingw32-g++".

« Make sure the C++ include path option includes the upper directory because the
common. h file is in the project directory and the generated C files are in ccg. So
the compiler options must include "-I..".

Here is how the 3 tabs should look like in the final set of options:

Generation options — m} had

Profiles: Option wizard...

Ceh IgiVinmuids Code gen. Build Debugftrace

Simulation options ~

General options

Destination directory: \UserDocumentation\RTDS\6.0\ Tutorial\Models\DeveloperTuterialiccg Browse...
Code templates dir.: ${RTDS_HOME\share\ccgiwindows Browse...
First signal nurn.: 1

Data allocation: Static ~

Generate all ASN.1 declarations in only one file: []

SDL-RT/SDL specific options

Language: [

Gen. code coverage info.: O

Operators implemented in C

Case-sensitive: O
Declaration header file prefix:

Generated constants prefi:

Prefix enum value names w. type name:]

Generated operator functions prefix:

Generate environment process:
Communicate with env. via macros:

Generate ASN.1 codecs for env. messages: [

TICH specific options
Generate: TTCM + SDL/SDL-R |~

Generate main function:

+ - Rename...

Cancel Import... Export...

PragmaDev Studio V6.0 Page 97

PRAGMADEYV

Tutorial modeling and testing tools

5 Generation options - m} had

Code gen. Build Debugftrace

Generate makefile

Command : Options:

Preprocessor: | |

Compiler: |mingw32-g++ | -Wno-write-strings -I..

Linker: | |

Additional files to link :

S{RTDS_HOME}/share/3rdparty/MinGW/lib/libws2_32.2

| | ‘ Browse... | | Add ‘ ‘ Remove |
[Include external makefile | | ‘ Browse... |
Do build
Before build command : | |

Exefoptions: Target: Add'l args:

Build command : |mingw32-make || || H Options... |

After build command : | |

+ - Rename...

PragmaDev Studio V6.0 Page 98

H .
Tuiorlul modeling and testing tools

Generation options - m} had

Profiles: Option wizard...

DebugiVindows Code gen. Build Debug/trace

Simulation options
Debug

O; Mone

() MSC Tracer

(O Standalone prototyping GUI runner
@® Debugger:

Debug environment: | MinGW ~
Debugger command : | gdb -nw

Startup commands: |set new-console no
set schedule-multiple on
get scheduler-locking off

(O Deployment simulator:

Simulater command

Socket connection to target

HAosailable :
Host IP address: | This host ~
Socket pert num. :

[] Back trace support
Max. number of events: |16

Size for message data

+ - Rename...

Cancel Import... Export...

Gnu example on Windows platform

5.4.2 Compilation errors

Once the SDL-RT debug profile is properly defined select the phone system in the Project

manager and click on the Debug quick button in the tool bar: %

If several execution profiles are defined, as in the examples, a window pops up asking
for the profile you want to use:

Code generation f... X

Choose profile to use :

DebugLinux
DebugWindows

[[] Set as default options

oK Cancel

The first time, the tool will ask about the target directory:

PragmaDev Studio V6.0 Page 99

Tutorial

modeling and testing tools

@™S. Code generation directory

Mon existent code gen. dir.

/.-' EX\Project2\UserDocumentation\RTDS\6.00\Tutorial\Models\De
veloperTutorial\ccg does not exist. Do you want to create it?

o]

Cancel

PragmaDev Studio will compare the dates of the generated C/C++ files with the dates
of the project, the diagram, the preferences. If the generated C file are not up to date
the following window will pop up to confirm the code should be generated again or not.

Regenerate code?

% Generated code does not seem to be up to date with the
s 4 generation options. Regenerate the whole code?

No | Cancel

*

This is very useful with large projects to avoid long compilations.

The package RTDS generated code is automatically created in the Project manager
window that will contain all the generated C files.

Studio

PragmaDev Studio - Project "phonerdp” (modified)

Project Edit View Element Generation Validation Windows Help

E & &5 B 6 %

gl

O

bed

= [phonerdp

normal

busy

common.h

sPhone
E—JtelephoneLibrary
= Eawr RTDS class sources

PhoneMumberFactory.h

PhoneMumberFactory.cpp

Makefile

RTDS_Start.c
RTDS_encdecMsgData.c
RTDS_gen.h
RTDS_messages.h
pCentral.c

piCentral.h

plocal.c

plocal.h

sPhoneh

s RTDS RTOS adaptation

The package RTDS RT0S adaptation is also automatically created in the Project man-
ager window; it will contain all the C files needed to adapt to the selected RTOS. These

PragmaDev Studio V6.0

Page 100

Tuioriul modeling and testing tools

files are actually in the code templates directory defined in the generation profile. These
files are normally not needed but since they are part of the build process they must be
visible.

The package RTDS class sources is also re-generated, but all the existing . cpp files
are left as is.

Syntaxic verification, semantic verification, code generation, and compilation starts:
Let’s consider an error occurred while designing pCentral process. The compiler will
complain in the Generation / compilation output window:

Generation/build for sPhone with DebugWindows - [m] X

Compiling... ”
--- Changing directory to E:\Project2\UserDocumentation\RTDS\6.0\ Tutorial\Models\ DeveloperTutorialiceg

--- Running "mingw32-make "

mingw32-g++ -DRTDS_FORMAT TRACE -I"." -I"ef\project\05_release\share\ccghwindows" -1"E:/Project/05_Release\share\ccgitrace\formattrace” -I'E:/Project/05_Releaseshare\ccg\common” -g -DRTDS_SIMULATOR

-DRTDS_CMD_INTERPRETER -I”E:?Pmje:t/DS_REIaase\share\c:g\tra:e\cnmmandlnterpre’tar‘ -I"eNproject2\userdocumentationtrtds\6.0\tutarialmodels\developertutorial* -DRTDS_SOCKET_IP_ADDRES5=127.0.0.1
-DRTDS_SOCKET_PORT=49250 -Wne-write-strings -I.. -c -0 "RTDS_Start.o" "e:\project2\use cumentation\rtds\6.0\tutorial\models\developertuterial\ccg\RTDS_Start.c”

mingw32-g++ -DRTDS_FORMAT_TRACE -I"." -I"e:\project\05_release'share\ccghwindows" -1"E:/Project/05_Release\share\ccgitrace\formatirace” -I"E:/Project/05_Release\share\ccg\common” -g -DRTDS_SIMULATOR
-DRTDS_CMD_INTERPRETER -I"E:/Project/03_Release\share\ccg\trace\ commandinterpreter” -|"e\project2\userdocumentation\rtds\6.0\tuterialmodelshdevelopertutorial” -DRTDS_SOCKET_IP_ADDRESS=127.0.0.1
-DRTDS_SOCKET_PORT=49250 -Wno-write-strings -I.. -c -o "RTDS_encdecMsgData.0" "e\project?\userdocumentation'rids\6.0\tutorial\models\developertutorial\ccg\RTDS_encdecMsgData.c”
mingw32-g++ -DRTDS_FORMAT_TRACE -I"." -I"e\project\03_releasetshare\ceghwindows” -1"E:/Project/05_Release\share\ccg\trace\formattrace” -I"E:/Project/03_Release\share\ccglcommon” -g -DRTDS_SIMULATOR
-DRTDS_CMD_INTERPRETER -I'E:/Project/05_Release\share\ccgltrace\commandinterpreter” -I"e:\projectZ\userdocumentation\rtds\6.0\tutorialmodels\developertutorial” -DRTDS_SOCKET_IP_ADDRESS=127.0.0.1
-DRTDS_SOCKET_PORT=49230 -Wna-write-strings -I.. -c -0 "pCentral.o” "e\project?\userdocumentation’\rtds\6.0\tutoria\models\developertutorial\ccg\pCentral.c*
eh\project2iuserdocumentation\rids\6.0\tutorial\models\developertutorialccghpCentral.c: In function "void pCentral(RTDS_GlobalProcessinfo™)":
elprojectZiuserdocumentation’rtds\6.0\tutorial\models\developertutorial\ccg\pCentral.c:8T:7: errer: expected ;' before 'index’

index++:

Makefilei49: recipe for target 'sCentral.o’ failed
mingw32-make: “** [pCentral.o] Error 1

1l Compilation failed (error code 512)!

##2 Done.

Close Re-compile = Save dialog text as...

Double click on the desired warning or error to automatically open the SDL-RT editor
on the error (please note this might not work when using another compiler than a gec
based compiler):

PragmaDev Studio V6.0 Page 101

otorial PRAGMADEYV

modeling and testing tools

&) PragmaDev Studio - Behavioral Diagrams — O *
Diagram Edit Search View Export Windows Help
=R o BEAE . G O []
JB pCentral |_
e, ~ 5
Em=0
£ (start)
— idle
RERY +1d
B index=0; o
[] |
Y phoneId : PhoneMumberFactory(NUM_PHONE)
-
@
I 1
(true) (false)
|
pLocal ready TO_ENV
I
phoneld-=append{OFFSPRING) idle
= | indext++;
v
- < >

Once the error have been corrected the Generation / compilation output window should
look like this:

PragmaDev Studio V6.0 Page 102

Tuioriul modeling and testing tools

Generation/build for sPhone with DebugWindows -] X
"RTDS_encdecMsgData.o” "e\project2iuserdocumentation’rids\6.0\tutorialmedels\developertutorialceg\RTDS_encdecMsgData.c” ~
mingw32-g++ -DRTDS_FORMAT_TRACE -I"." -I"e:\project\05_release\share\ccgiwindows" -1"E:/Project/05_Release\share\ccghtrace\formattrace” -1"E:/Project/05_Release\sharelccg\common”

-g -DRTDS_SIMULATOR -DRTDS_CMD_IMTERPRETER -I"E:/Project/05_Release\share\ccghtrace\commandinterpreter”
-I"e\project?\userdocumentation'rtds\&.0\tutorial\models\developertutorial" -DRTDS_SOCKET_IP_ADDRESS=127.0.0.1 -DRTDS_SOCKET_PORT=49250 - Wno-write-strings -l. - -o "pCentral.o”
“e\projectZ\userdocumentation’rtds\6.0\tutorial\models\developertutorial\ccg\pCentral.c”

mingw32-g++ -DRTDS_FORMAT TRACE -I"." -I"e\project\03_release\share\cegiwindows" -I"E:/Project/05_Release\share\ccg\trace\formattrace” -I"E:/Project/05_Release\share\ccgh\common”
-g -DRTDS_SIMULATOR -DRTDS_CMD_IMTERPRETER -1"E:/Project/05_Release\share\ceghtraceh\commandinterpreter”
-I"e\project?\userdocumentation'rtds\6.0vtutorial\models\developertuterial” -DRTDS_SOCKET_IP_ADDRESS=127.0.0.1 -DRTDS_SOCKET_PORT=49250 -Wno-write-strings -|.. -c -0 "plocal.o”
"e\project?\userdocumentation’rtds\6.0\tutorial\models\developertutorial\ccghplocal.c”

mingw32-g++ -DRTDS_FORMAT_TRACE -I"." -I"e\project\05_release\share\ccgiwindows" -I"E:/Project/05_Releasetshare\ccgitrace\formattrace” -I"E:/Project/05_Release\share\ccghcommaon”
-DRTDS_SIMULATOR -DRTDS_CMD_INTERPRETER -I"E:/Project/05_Release\share\ceghtrace\commandinterpreter”
-I"e\project?\userdocumentationtrtds\8.0\tutorial\medels\developertuterial” -DRTDS_SOCKET_IP_ADDRESS=127.0.0.1 -DRTDS_SOCKET PORT=49250 -Wno-write-strings -|. -c -0
"PhoneMumberFactory.o” "e\project2iuserdocumentation’rtds\6.0\tuterialmedels\developertutorial\PhoneMumberFactory.cpp”

mingw32-g++ -DRTDS_FORMAT_TRACE -I"." -I"e:\project\03_release\share\ccgiwindows" -1"E:/Project/05_Release\share\ccghtrace\formattrace” -1"E:/Project/05_Release\sharelccg\common”
-DRTDS_SIMULATOR -DRTDS_CMD_IMTERPRETER -I"E:/Project/05_Release\share\ccg\trace\commandinterpreter”
-I"e\project?\userdocumentation'rtds\&.0\tutorial\models\developertutorial" -DRTDS_SOCKET_IP_ADDRESS=127.0.0.1 -DRTDS_SOCKET_PORT=49250 -Wno-write-strings -|. -c -o "RTDS_05.0"
“e\project\05_release\sharehccg\windows\RTDS_05.c"

mingw32-g++ -DRTDS_FORMAT_TRACE "eh\project\03_release\sharehccgwindows” :/Project/05_Release\share\ccgitrace\formattrace” -|
-g -DRTDS_SIMULATOR -DRTDS_CMD_IMTERPRETER -1"E:/Project/05_Release\share\ccghtrace\commandinterpreter”
-1"e\project?\userdocumentation'rtds\6.0vtutorial\models\developertutorial” -DRTDS_SOCKET_IP_ADDRESS=127.0.0.1 -DRTDS_SOCKET_PORT=49250 -Wno-write-strings -|.. -c -0
"RTDS_TCP_Client.o" "e\project\03_release\share\ccg\windows\RTDS_TCP_Client.c"

mingw32-g++ -DRTDS_FORMAT_TRACE -I"." -I"e/\ project\035_release\share\ccghwindows" -1"E://Project/05_Release\share\ccgtrace\formattrace” -I"E:/Project/05_Release\share\ccgicommon®”
-g -DRTDS_SIMULATOR -DRTDS_CMD_INTERPRETER -I"E:/Project/05_Release\share\ccgtrace\commandinterpreter”
-I"en\project?\userdocumentationtrtds\6.0\tutorial\medels\developertuterial” -DRTDS_SOCKET_IP_ADDRESS=127.0.0.1 -DRTDS_SOCKET_PORT=49250 -Wno-write-strings -|. -c -0
"RTDS_Cmdinterpreter.o” "E:/Project/05_Release\share\ cegitraceicommandinterpreter\RTDS_Cmdinterpreter.c
mingw32-g++ -DRTDS_FORMAT_TRACE -I"." -I"e:\project\03_release\share\ccgiwindows" -1"E:/Project/05_Release\share\ccg\trace\formattrace” -1"E:/Project/03_Release\sharelccglcommon”
-g -DRTDS_SIMULATOR -DRTDS_CMD_IMTERPRETER -1"E:/Project/05_Release\share\ccghtrace\ commandinterpreter”
-I"e\projectZ\userdocumentationtrtds\6.0\tutorial\medels\developertuterial” -DRTDS_SOCKET_IP_ADDRES5=127.0.0.1 -DRTDS_SOCKET_PORT=49250 -Wno-write-strings -|. -c -0
"RTDS_FormatTrace.o" "E:/Project/05_Release\share\cegitrace\formattrace\RTDS_FormatTrace.c”

mingw32-g++ -0 "sPhone.exe" RTDS Start.o RTDS_encdecMsgData.o RTDS_Env.e pCentral.o plocal.c PhoneMumberFactory.o RTDS_0S.c RTDS_TCP_Client.c RTDS_CrndInterpreter.o
RTDS_FormatTrace.o E:/Project/05_Release/share/3rdparty/MinGW/lib/libws2_32.a

#22 Done.

roject/03_Release\share\ccgicommon”

Close Re-compile ~ | Save dialog text as...

PragmaDev Studio V6.0 Page 103

Tutorial

modeling and testing tools

5.4.3 The SDL-RT debugger

When launched, the SDL-RT debugger will automatically start and initialize the under-
lying gdb environment.The SDL-RT debugger window is started automatically:

PragmaDev Debugger

BE? T X [1im % ¢

Debugger Options View Run Trace Environment Windows Help «

TR U A = Ry I

MName Pric SDLid RTOS id M SDL-RT state

System state

Timers: Semaphores:

Owner Mame Time left

System time: 0

Mame

- O *
S EH e r = %
Watches:
Name Type Value
Local variables:
Mame Type Value

PragmaDev Studic shell
=Free run off.

Debugger state: STOPPED |Active thread:

The SDL-RT debugger window

The SDL-RT debugger is basically a debugger with graphical integration. This window

provides snapshots of the overall system.

First we want an MSC trace to see what is happening in the system. Click on the Start

MSC trace quick button: L

An MSC Tracer window appears. Note it is not an MSC editor window; the MSC Tracer
has been optimized for performance and the displayed trace can not be edited.

Let’s start the system; click on "run’ quick button: %~

Let the system run until all pLocal processes are created by pCentral and their start

transition executed:

PragmaDev Studio V6.0

Page 104

M .
Tuiorlul modeling and testing tools

MSC Tracer - [m] X
Trace View Windows Help
=l
<New 1>
pCentral RTDS_Env pLocal pLocal pLocal pLocal pLocal
(ex6816de) (©x683070) (Ox6831F0) (0x6832c0) (0x683350) (0x683460) (9x683538)
pCentral RTDS_Env
(0x6816d8) (9x683078)
_________________ pLocal
i % (exE831f0)
77777777777777777777777777777 pLocal
&2 »{ (0x6832c0)
__ pLocal
o ‘% (0x683390)
77 plocal
63! >{ (0x683460)

__ » pLocal
= (9x683538)

110

125

157

172

204 idle

219 idle

250 idle

Tracing <

MSC trace
Note you can detach the execution button bar by dragging it away from the debugger

window by its header (the zone looking like this: - if you don’t see it, go to the prefer-
ences in the "Studio" menu of the project manager, and check the option "Detachable
toolbars" in the "General" tab).

Execution buttons

wr A Yo v oo I T 1N

The environment is represented by RTDS_Env process. It is automatically generated by
PragmaDev Studio when debugging to represent all external modules. When generat-
ing target code it will of course disappear.

Process pCentral dynamically creates 5 instances of pLocal, sends ready message to

PragmaDev Studio V6.0 Page 105

H .
Tuiorlul modeling and testing tools

the environment and goes to idle state. Each pLocal instance then go to idle state.
On the left is the value of the system time.

Click on the Stop button to break execution:

The SDL-RT debugger window shows the list of processes with their names, priority,
process id, queue id, number of messages in their respective message queues, SDL-
RT internal state as we defined in the diagrams, and the RTOS internal system state if
available.

PragmaDev Debugger - m} x

Debugger Options View Run Trace Environment Windows Help =

Bl L L lTeez 0 g e i e P = A
Mame Pric SDLid RTOSid M SDL-RTstate System state Watches:

RTDS Env 0 Ox623070 0x514 0 RTDS.Idle N/A Name Type Value

pCentral D OxB816d0 0x1294 0 idle N/A

plocal 0 OxE831f0 Oxbfc 0 idle N/A

plocal D OxB832c0 0x18f4 0 idle N/A

plocal D 0x683390 0x1208 0 idle N/A

plocal D OxB23460 0x1944 0 idle N/A

plocal D Ox623530 Ox3e8 0 idle N/A

Timers: Semaphores:

Owner Mame Time left Mame Id. el

MName Type Value

System time: 266522

Sldsh PLEINLI G LIDAUSLUUGS Id3 LidHyeu LU 3ldle 1Ule dl. 13 LILRS
=Task RTDS_Env(8x683070) has changed to state RTDS_Idle at: 157 ticks
=Message: ready uniqueId: 1 received by: RTDS_Env(0x683070) at: 172 ticks
=Task pLocal(@x6831f8) has changed to state idle at: 284 ticks

=Task pLocal(ex683390) has changed to state idle at: 219 ticks

=Task pLocal(ex683460) has changed to state idle at: 250 ticks

=Task pLocal(ex683530) has changed to state idle at: 266 ticks

=Task pLocal(0x6832c0) has changed to state idle at: 297 ticks

=stop

Debugger state: STOPPED [Active thread: 0x880-> Unknown

SDL-RT debugger window
It can also display information regarding semaphores and timers, local variables and
watch variables. The SDL-RT debugger shell gives a textual trace of the events displayed
in the MSC.
We are now going to set a breakpoint, simulate a user using one phone to call another
one and step in process pCentral.
Let’s put a breakpoint in pCentral process. To do so:

« Open pCentral process from the Project manager. Double-clicking on its name
in the running instances list in the debugger window works too.

« Go to transition getld in state idle using the transition browser window on the
right:

PragmaDev Studio V6.0 Page 106

PRAGMADEYV

Tutorial modeling and testing tools

Tm=0
(start)
idle

or the view menu:

i) PragmaDev Studio - Behavioral Diagrams - O X
Diagram Edit Search View Export Windows Help =
o =5 Refresh K K K
|+ o] o] 3 ¢! .
Tt EH =8 .., s PRl AR Wy
JQ [Franiel v Edition mode |_
- Navigati d & . _
- oigeion mode X
) Show/hide side panel {start}
oy Show/hide notifications int idle
il)) . getId
D Show/hide printed page boundaries short
Show symbel documentation hints RTDS_f
- nm--qiih-l
ST .
o S~ de V| geia
Zoom out
Zoom to 4
-
Header symbols alignment 4
Grid
phonel r_') .
v Sticky alignment lines
fndex < NUM_PHOI
T 1
(true) (‘Fa'[se)
|
pLocal ready TO_ENV
I
phoneld-=append (OFFSPRING) ; idle
1ndex++;
W
- £ >

The transition browser of the View/Go to menu will list all SDL-RT states and all
transitions in each state to quickly navigate through the system. In our case there
is only one state and one transition.

« click on the symbol just after the decision:

PragmaDev Studio V6.0 Page 107

H .
Tuiorlul modeling and testing tools

ﬂ

getld{phoneNumber) <
(true) (false)
|
pId = phoneld->getPid{phoneNumber); errorMsg T0_ID SENDER>
7
idMsg{pId} TO ID SENDER>

idle

« click on W or go to Debug / Set breakpoint menu in the SDL-RT editor. A break-
point symbol will be displayed on the side of the selected symbol:

\ /

© | pId = phoneld-=»getPid{phoneNumber);

|
[)l

We will now simulate an incoming message from a user. Please note this feature is
not available in the Tasking integration nor in the XRAY integration because these C
debuggers can neither execute function calls on target nor simulate interrupts.

+ Go to the SDL-RT debugger and click on "Send an SDL message to the running

system" quick-button &

« The Send an SDL message window shows up:

Send an SDL message to system - m} X
Select the receiving process: Available messages: Message parameters:
Mame PID Mame # Type L Mame Type Value
RTDS_Env (683070 busy 2 NORMAL_SIGNAL
pCentral (x6816d0 call 13 NORMAL_SIGMAL
plocal (x6831f0 callConf 5 NORMAL_SIGNAL
plocal 0x6832c0 conConf % MNORMAL_SIGNAL
plocal (x683390 conReq 7 NORMAL_SIGNAL
plocal (683460 disConf 1 NORMAL_SIGNAL
plocal (683530 disReq 10 NORMAL_SIGMAL
errorMsg 4 MNORMAL_SIGNAL
getld % NORMAL_SIGNAL
hangUp 11 NORMAL_SIGNAL
Consider receiver state hangUpConf 3 NORMAL_SIGNAL | W
Send Send & close Close Save to file | | Import from file

Send an SDL message window
On the left are listed all possible receiving processes, in the middle all possible mes-
sages, i.e. all messages used in the SDL-RT system, and on the right the value of the
parameters associated with the selected message.

 Prepare the message to be sent:

PragmaDev Studio V6.0 Page 108

11]1()riCII modeling and testing tools

Send an SDL message to system - m} X
Select the receiving process: Available messages: Message parameters:
Name PID Mame # Type (Mame Type Value
pCentral 0x6216d0 busy 2 MNORMAL_SIGNAL
RTDS_Env 0x683070 call 13 NORMAL_SIGNAL
callConf 5 NORMAL SIGNAL
plocal 0x6832¢0 cenConf 9 MNORMAL_SIGMAL
plocal 0x683390 conReq 7 MORMAL_SIGMNAL
plocal 0x 683460 disConf 1 MNORMAL_SIGMNAL
plocal 0x683530 disReq 10 NORMAL_SIGNAL
errarisg 4 MNORMAL_SIGNAL
getld 8 MNORMAL_SIGNAL
hangUp 11 MORMAL_SIGNAL
Consider receiver state hangUpConf 3 MNORMAL_SIGNAL |
Send Send 8¢ close Clese Savetofile | Import from file

The message to be sent is call, with the parameter value 2. We will choose the
first listed instance of pLocal as the receiver. You might want to write down it’s
PID, since we will send it another message later.
NB: it may happen that the first listed instance of pLocal has been assigned the
phone number 2, in which case the following will not work, as the phone will try to
call itself. If this happens, just send again a new call message to another pLocal
instance.

« Click on Send & close button.

+ Click on Run in the SDL-RT debugger window,

« The following trace appears in the MSC:

pCentral RTDS_Enw pLocal pLocal
(Dx6816d0) (Bx683070) {Dx6831f0) (Bx6832c0)

araml=2})

getId{{p =21) gettingId

g

o 1 [.

« The SDL-RT editor pops up where the breakpoint was set with the break line se-
lected and an arrow in front of it:

= @ | pId = phoneld-=getPid(phoneNumber);

The values of the process local variables are automatically displayed in the SDL-
RT debugger. For example the phoneNumber variable value is 2:

PragmaDev Studio V6.0 Page 109

Tutorial

modeling and testing tools

Local variables:

MName
% phoneld
phoneMumber
+ pld

index

Type Value
PhoneMumt (PhoneMumberFactory *) (x6830f3
short 2
RTDS_PID

int 5

Local variables values

« Click on Auto step until next graphical symbol button: "
That quick button will actually step in the C code until the line in the C file is

generated from a graphical symbol. In our case it will only step once.

« The SDL-RT has moved to the next symbol:

@ | pId = phoneld->getPid(phoneNumber) ;

=,

« Click on Step over button: it

idMsg{pId) TO_ID SENDER>

This will step in the C code as any normal C debugger. The text editor opens
and displays the next line to execute in the generated C file. Have a look at the
generated code to see how legible it is.

PragmaDev Studio V6.0

Page 110

Tuioriul modeling and testing tools

PragmaDev Studio - Text files - [m] X
File Edit Search View Preferences Windows Debug Help =

e B o BX B D Er ol D O U | ¥}
pCentral.c

F NI DO RIC T ST Cf Ty WAGURS] O TCRSS D01 1 UL _miun e s 7 n

b “ ERSE

/* Double switch state / signal */ RTDS_TASK_ENTRY_POINT()

RTDS_transitionExecuted = 1;
switch(RTDS_currentContext->sdlState)

/* Transitions for state idle */
case RTDS state idle:
switch(RTDS_currentContext-=currentMessage-=messageNumber)

/* Transition for state idle - message getld */
case RTDS_message_getId:
RTDS_MSG_RECEIVE_getId(phonehumber) ;
if (!(phoneNumber < NUM_PHONE))
{

RTDS_MSG_QUEUE_SEND_TO_ID(RTDS_message_errorMsg, ©, NULL, SENDER);
RTDS_SDL_STATE_SET(RTDS_state_idle);
break;
else if { phoneNumber < NUM_PHONE)
{

pId = phoneld-=getPid(phoneNumber);

RTDS_MSG_SEND_idMsg_TO_ID{SENDER, pId);
| RTDS_SDL_STATE_SET(RTDS_state_idle);
break;
}
default:
RTDS_transitionExecuted = 0;
break;
} /* End of switch on message */
break;
default:
RTDS_transitionExecuted = 0;
break;

} /* End of switch(RTDS_currentContext->sdlstate) */
+

/ */

/* $(RTDS_HOME) /share/ccg/windows/bricks/RTDS Proc_end.c begins */

/* PragmaDev RTDS win32 integration *f

RTDS_TransitionCleanUp(RTDS_currentContext, RTDS_sdlStatePrev);

} /* End of 1f (RTDS_currentContext-=currentMessage != NULL } to execute transition */
Y /* End of for (; ;) */

/* $(RTDS_HOME) fshare/ccg/windows/bricks/RTDS Proc_end.c ends */ v

E/\Project2\UserDocumentation\RTDS\6.0\ Tuterial\Models\DeveloperTutorial\ccg\pCentral.c line 189 col D Oselected | 7036 bytes

Note it is possible to switch from the SDL source to the generated C source back and
forth with the Search / Go to generated source and Search / Generated code <-> source
menus.

« Let the system finish its job: click on Run button.

« Stop the system once it has finished execution: Y. The process list is updated
with their new states:

Mame Pri 5DLid RTOSid Msg SDL-RT state System state
RTD5 Env 0 (xB83070 Ox514 0 RTDS_ldle N/A
pCentral 0 (x6316d0 0x1204 0 idle N/A
plocal 0 0xB831f0 Oxbfc 0 connected MN/A
plocal 0 0xB6832c0 Ox18f4 0 idle MN/A
plocal 0 0x683390 0x1208 0 connected MN/A
plocal 0 0683460 Ox1944 0 idle N/A
plocal 0 0683530 Ox3ed 0 idle N/A

Two instances of the pLocal process are connected.

« Itis also possible to change the state of a process. To do so right click on the state
you want to change and a drop down menu will list all possible states. Let’s change
the state of the last instance of pLocal to gettingId for example:

PragmaDev Studio V6.0 Page 111

Tutorial

PRAGMADEV

modeling and testing tools

Mame Pri 5DLid RTOSid Msg SDL-RTstate System state
RTDS Env 0 0xB83070 Ox514 0 RTDSIdle MNiA
pCentral 0 0xB6816d0 (1294 0 idle M7A
plocal 0 OxB831f0 Oxbfc 0 connected

N/A

0x6832c0 Ox18f4 0 S
RTDS_Start
plocal 0 (x683390 (x1208 0 idle
plocal 0 0x683460 (x1944 0 i connected
plocal 0 (x683530 Dx3ed [[I| oettingld
connecting
disconnecting
o= RTDS_ldle
Owr Name Time left ‘ ‘ MName Id. ‘

The state is changed on the target and the process list will refresh:

Mame Pri 5DLid RTOSid Msg SDL-RT state Systern state

RTD5Env 0 (xB83070 Ox514 0 RTDS_Idle N/A

pCentral 0 (x6816d0 (x1294 0 idle N/A

plocal 0 (x6831F0 Oxbfc 0 connected N/A

(x6832c0 Ox18f4 0 gettingld

plocal 0 0(x683390 (x1208 0 connected MN/A

plocal 0 (x683460 (Ox1944 0 idle N/A

plocal 0 (x683530 (x3ed 0 idle N/A

Timers: Semaphores:

Owr Name Time left

‘ ‘ MName

Id. ‘

It is recommended to be cautious when changing a task state that way...

« We will now disconnect the 2 instances of pLocal. Click on the Send button & :

'ﬂ Send an SDL message to system — m} X
Select the receiving process: Available messages: Message parameters:
Mame PID Mame # Type ”~ Mame Type Value
pCentral (x6816d0 busy 2 MNORMAL_SIGNAL
RTDS_Env (0x683070 call 13 MNORMAL_SIGMNAL
callConf 5 NORMAL SIGNAL
plocal 0x6832c0 conConf 9 MNORMAL_SIGNAL
plocal 0683390 conReq 7 MNORMAL_SIGNAL
plocal 0x683460 disConf 1 MNORMAL_SIGMAL
plocal (0x683530 disReq 10 NORMAL_SIGMAL
errarhsg 4 MNORMAL_SIGMAL
getld 8 MORMAL SIGNAL
hangUp 11 NORMAL_SIGNAL
Consider receiver state hangUpConf 3 MNORMAL SIGNAL | W
Send Send 8 close Close Saveto file | Import from file

Select the hangUp message with the receiver set to the same pLocal instance as
you selected as the receiver of the call message earlier (check with its PID). Then
click on Send & close.

« We will now use the key SDL-RT event stepping button: »
This feature runs the system until the next SDL-RT event such as sending or re-

ceiving a message, changing SDL-RT state, starting or cancelling a timer... Click
on the button and you will see the system executing until the next SDL-RT event
and then stop. This is a very nice feature when debugging for the first time.

PragmaDev Studio V6.0 Page 112

Tutorial

modeling and testing tools

5.4.4 Verifying the behavior

We will now check if the behavior is the one we expected in the first place. To do so we

will use the MSC diff feature.

« Once the execution is finished, close the MSC Tracer and save the trace.

« Go to the Project manager and open the trace.

» Go to the Diagram / Compare with other diagram... menu to get the MSC Diff
configuration window and set it up as described below:

PragmaDev Studic

Filter activated

Diff
Messages:
Consider data: O
Timers: O
States: O
Tirme constraints: O
All
Display full results
Cancel

Diff type: Basic MSC diff ~
First M5C: trace ~ Browse...
Second M5C: | normal ~ Browse...

bed

The first MSC is the execution trace and the second MSC is the normal MSC we
have written in the first place. Since normal MSC was not supposed to be thor-
oughly detailed we will only show and compare messages without considering
their parameters. Click Ok and you should get the following:

Diagram differences

Diagrams differ. (8 difference(s))

Highlight: Current All Lifeline pLocal
o
1/8
A
()

Close

(0x6832c0) deleted from origin diagram

Here you can navigate through the differences, and by selecting All, then all of

them will be shown in the diagram:

PragmaDev Studio V6.0

Page 113

Tuioriul modeling and testing tools

PragmaDev Studic - MSC Diagrams - u] X
Diagram Edit Search View Export Windows Help

B = A& BRI o B A B K
trace
[N
-
*
"
pCentral RTDS_Env
— (0x6816d0) (0x683078)
16 pLocal
» — (ox6831f0)
pLocal
_ =2 e 6tttk (it .'{ (ox6832¢8)
E =
pLoca
(! A 1 Y | A A | % (‘
_______________________________________ pLocal
E = '-{ (Bx683460)
__ pLocal
7 '+ (ex683530)]
. 118
: 125
(==l < dle
=
— - réady
157
RTDS_Idle
§ 172
N 204
e idle
|
219
= idle
= —_—
s
B @
B @
B @
1138297
e ca raml|=2]})
1138329 ©
- < >

The differences between the MSCs are the dynamic task creation of the pLocal in-
stances. After that the exchange of messages are the same between the dynamic
trace and the specification. The SDL-RT system is therefore conform to the nor-
mal MSC specification.

You are done with a very simple SDL-RT debugging session. If you want more, do your
own system or run the examples delivered in the distribution to see how to manipulate:

« timers,

« semaphores,

« external C header files,
« global variables.

PragmaDev Studio V6.0 Page 114

Tuioriul modeling and testing tools

5.5 Prototyping GUI

PragmaDev Studio has a built in support to design simple prototyping interface to ease
testing. We will build a very simple one for our phone system to demonstrate its capa-
bilities.

5.5.1 GUI editor

Add a Prototyping GUI node in the project and open it:

Add child element *
Containers
Requirements
i:r:::z:;edm Prototyping GUI| TTCN3file TTCN3 parameters file
Behavior
Passive architecture
Hardware architecture Name: myGULrdu
Documentation File: E:/Project2/UserDocumer | Open
External files
Language:
Create legacy diagram
[Auto-sort
PragmaDev Studio - Project "phone.rdp” - O *

Studic Project Edit View Element Generation Validation Windows Help

E & B B B E

= [phonerdp
normal
busy
common.h
=] sPhone
plocal
pCentral
E—telephoneLibrary
[RTDS class sources
[RTDS generated code
[RTDS RTOS adaptation

trace

The left panel contains the incoming triggers for the GUI, the central panel the GUI
itself, and the right panel the outgoing message from the GUI:

PragmaDev Studio V6.0 Page 115

PRAGMADEYV

Tuforial modeling and testing tools
4/ PragmaDev Studio - Pratotyping GUI "myGUlrdu" — O *
File Edit Windows Help
o) SO Wk
Triggers o . @ I o Widget output actions

v CI3 —-_ . A
OmyGULrdu — O myGULrdu
~
v
< >
)
Let’s add 2 buttons and one LED:
i PragmaDev Studio - Prototypin "m rdu” (modifie —
& PragmaDev Studio - Protatyping GUI "myGUlrdu" (modified) O had
File Edit Windows Help
| @ P K
Triggers E: @ e @ L wm Ab Widget output actions
ormyGULrdu s ¥ rmyGUlLrdu
o < BUTTON
< BUTTON
Call John
v
< >

PragmaDev Studio V6.0 Page 116

Tuioriul modeling and testing tools

Change their display value in the central panel and their widget name in the right panel
in order to recognize them:

PragmaDev Studic - Prototyping GUI "myGULrdu" (medified) — O had
File Edit Windows Help
Triggers e @ L £ Widget output actions
OmyGULrdu * ryGULrdu
~ < Calllohn
OLED
Call John
Hang up
v
< >

Let’s say that when the user clicks on the "Call John" button, the GUI sends a call
message with parameter set to "2". Select the CallJohn widget on the right panel and
right click:

Widget output actions

*myGUlrdu

of Add busy output action

B8 7 cotoutputscton |
Add callConf output action
Add conConf output action
Add conReq output action
Add conconf output action
Add conreq output action
Add disConf output action
Add disReq output action
Add errorMsg output action
Add getld output action
Add get_id output action
Add hangUp output action
Add hangUpConf output action
Add idMsg output action
Add ready output action

PragmaDev Studio V6.0 Page 117

H .
Tuiorlul modeling and testing tools

All the available messages in the system are then listed. Select call and expand the
created sub-tree. The parameters are listed with their corresponding type:

Widget output actions

*myGUlrdu
w call
@ param1|=short
<HangUp
OLED

Let’s say the parameter value is ’2’ and let’s send hangUp without any parameter when
clicking on Hangup:

Widget output actions

*myGUlrdu
¥ Calllohn
¥ call

Cparam1|=2

I—YhangUp
O
OLED

On the left panel now, we will add a new trigger. A trigger performs some action on
the widgets whenever a message is sent out of the system. Select the top of the tree and
right click to get a list of all the possible triggers:

Triggers

G iy

Add busy trigger
Add call trigger

Add conConf trigger
Add conReq trigger
Add concenf trigger
Add conreq trigger
Add disConf trigger
Add disReq trigger
Add errorMsg trigger
Add getld trigger
Add get_id trigger
Add hangUp trigger
Add hangUpConf trigger
Add idMsg trigger
Add ready trigger

Let’s add the callConf trigger. When a trigger is received by the GUI, a case with a set
of filters is verified. Let’s add a new case:

Triggers
*myGUlrdu
(.

Delete trigger

PragmaDev Studio V6.0 Page 118

H .
Tuiorlul modeling and testing tools

In our case we won’t put any filter, we will just change the color of the LED:

Triggers

*myGUlrdu
¥ callConf

e Add filter

Delete case ‘
| HangUp

The default action is DISPLAY; you'll have to right click on it to change it to CHANGE_ -
COLOR. The node in the tree under the action specifies the new color for the widget. It
is possible to directly name the basic colors, otherwise the RGB hexa code can be used

(e.g #FF8000 is this color). Let’s put the LED back to red when we receive a HangUp
confirmation and we’re done:

PragmaDev Studio - Prototyping GUI "myGUl.rdu” (modified) = O x
File Edit Windows Help

G b @ # |0 K

Triggers ae. @ L £ Widget output actions
*myGUlLrdu ¥rmyGULrdu
w callConf ~ wCalllahn
w [Mew case w call
| ED O param1|=2
O CHAMNGE_COLOR *HanglUp
Cgreen vhangUp
*hangUpConf o

wMew case O LED
[, Call John

< CHAMNGE_COLOR
Cred

Hang up

5.5.2 GUI simulation

Let’s start the Debugger again and click on the Start prototyping GUI quick button: EH
The GUI will start and connect automatically to the system:

PragmaDev Studio V6.0 Page 119

M .
Tuiorlﬂl modeling and testing tools

myGULrdu — x

Call John

Start an MSC trace and run the system. Click on the "Call John" button, that should
send the call message with parameter value set to 2, the callConf should be received
by the GUI, and the LED should be set to green:

myGULrdu — x

Call John

For a more advanced GUI, please have a look at the AccessControl system in the Devel-
oper example directory.

5.6 Conclusion

During this tutorial we have been through the basics of the following:
e SDL-RT;
 Project manager;
SDL-RT editor;
MSC editor;
« Code generation;
SDL-RT debug including the three stepping modes:
— SDL-RT key event,
— SDL-RT graphical,

PragmaDev Studio V6.0 Page 120

H .
Tuiorlﬂl modeling and testing tools

— textual;
« Conformance checking;
« Prototyping GUI.
As a result you saw SDL-RT has the preciseness of C language with the graphical ab-

straction of SDL and UML perfectly suited to real time systems showing key concepts

such as tasks, semaphores, timers, messages in a single consistent development envi-
ronment.

Now it is time for you to work on a real real time system!

PragmaDev Studio V6.0 Page 121

Tuioriul modeling and testing tools

6 Automatic documentation
generation

Let’s now have a look at how to document our system. PragmaDev Studio has an au-
tomatic documentation generator that generates OpenDocument (OpenOffice), RTF
(Microsoft Word), HTML, and SGML documents. In this tutorial we will generate an
OpenDocument as it is very similar to generating an RTF document.The basic idea is
to document while you are modeling your system in SDL, and when you are done just
generate the documentation for a word processor or a browser.

6.1 Publications

Let’s first define what is important to document in our system and put it in a publication.
For example let’s consider the architecture of the system should be further documented:

PragmaDev Studio V6.0 Page 122

PRAGMADEYV

Tuforial modeling and testing tools
4 PragmaDev Studio - Diagrams — O *
Diagram Edit Search View Export Windows Help
t =R edEXE LD 0 0E D [

JB sPhone |_
o LBl P
N wm=0
1 - Part. ©
r-r—-——-"-""-""-""-"="-"="-"="-"=-"=-"=-"=-"=-"=-"="-"=-"="="-"="-"="-"="-"=-=-"=-=-= N
-l
: MESSAGE call{short), hangUp; !
| MESSAGE ready, callConf, hangUpConf, busy; !
| MESSAGE conReq, conConf, disReq, disConf: 1
N : MESSAGE getId(short), 1dMsg{RTDS PID), errorMsg; :
| o o o e e L ________ |
™
L #include "common.h” T
-
- ———<——— cEnvCentral pCentral
[ready] [1
-
[1] [getId]
cInternal
[idMsg,
errorMsgl
———e—— cEnvLocal pLocal (@, NUM_PHONE)
[callConf, [call, [1
hangUpConf, hangUp]
busy] [busy,
conReq,
conConf,
disReq,
disConfl
cself
v
- < >

Get to the corresponding diagram and go to the Export menu. We want to export the
whole partition, so select Export/publish partition...

'ﬂ PragmaDev Studio - Diagrams

Diagram Edit Search View Export Windows Help

§§ f H é ‘ Export/publish selected symbols... ﬁ ﬁ

Expert/publish transition...

Jm sPhone Export/publish state...
. Export/publish partition...
. Export/publish diagram...

R

Manage publications...

|
: MESSAGE call{short), hangUp: |
| MESSAGE ready, callConf, hangUpConf, busy; !
| MESSAGE conReq, conConf, disReq., disConf: 1
: MESSAGE getId(short), idMsg(RTDS_PID), errorMsg: :

|

PragmaDev Studio V6.0 Page 123

Tuioriul modeling and testing tools

The Export/publish window opens:

Export/publish s
Publications: Options Exports Texts
Type for image(s): PNG |v Wrap images in HTML file: []
Scale factor: 100 |~ Split images into pages: O
Export to file: ~ Browse...

Store relative file name: []

[] save as publication:

oK Apply Close Show Export Delete

Let’s give our publication a name, the Doc type, and check the Save as publication box:

Export/publish *

Publications: Options Exports Texts

Type for image(s): Doc |+ Wrap images in HTML file:
Scale factor: 100 |- Split images into pages:]
Export to file: Browse...
Store relative file name:
Save as publication: | ToplevelArchitecture

Apply Close Show Export Delete

Select the Texts tab. The two editors here allow you to type the texts that will be gener-
ated before and after the diagram when generating the documentation. Let’s type a few

PragmaDev Studio V6.0 Page 124

Tutorial

PRAGMADEV

modeling and testing tools

words to document the diagram with the pre-defined paragraph and character styles:

& Export/publish

Publications:

<< New>»

Options Exports Texts

~ f;- ~

bes

Text before:
9: listparal
The system is made out of 2 parts:
- The central part:
system.
- The local part:

It describes the behavior of a single phone.

It is basically the database that stores the PIDs of all the phones in the

Text after:

9: | body ~| f:

code-index-entry ~

The maxinmm number of phones is in the constant hmH_PHONE_

o]

Apply

Close Show

Export

Delete

We want the NUM_ PHONE identifier to appear as code, and also to be listed in the doc-
ument index. To do so, select the text, and apply to it the code-index-entry character
style that is listed in the " f:" selector above the text.
When done click OK.

Let’s now document a transition. Open the pLocal process and go to the connected

state:
i PragmaDev Studio - Behavioral Diagrams - O x
Diagram Edit Search View Export Windows Help
tE 2R @ BXBIAALD . B E
J plocal |_
. A~ 3
B
connected
conReq
disReq
conReq disReq hangup hangUp
connecting
busy
. . conConf
busy TO_ID SENDER disConf TO_ID SENDER disReq TO_ID remoteld disconnecting
disConf
gettingId
e
4 idle
call
[conReq
{3
W
- <
.
PragmaDev Studio V6.0 Page 125

Tutorial

PRAGMADEYV

modeling and testing tools

Go to the Export menu and select Export/publish selected state or transition...:

'ﬂ PragmaDev Studio - Behavioral Diagrams

— O d
Diagram Edit Search View Export Windows Help
K = K Export/publish selected symbol... o 3
. . . [4] y 3%
o f B = o Export/publish selected state or transition... 5 G ko L ﬁ
JB plocal Export/publish current partition... |
- M blications... 2 = —
= anage publications, T= rl—-)Jé ﬂ
% S (start)
== connected
pii conReq
disReq
conReq disReq hangUp hangUp
connecting
busy
. . conConf
busy TO_ID SENDER disConf TO_ID SENDER disReq TO_ID remoteld disconnecting
disConf
gettingld
comeced siscomnecting crrores
K -/ -/ - 7 idle
call
. conReq
)
v
- |« >

This will export the state with all the connected inputs as a publication. Let’s document

the state:

I Export/publish

Publications:

Options Exports Texts
Type for image(s):

Scale factor

Export to file:

Store relative file name:

Save as publication: ConnectedState|

Apply Close Show

Wrap images in HTML file:

Split images into pages:

Browse...

Export Delete

PragmaDev Studio V6.0

Page 126

Tutorial

PRAGMADEV

modeling and testing tools

i Export/publish

Publications:

Options Exports Texts
Text before:

9: body ~| f:

code-index-entry ~

The disReq message comes from the remote phone and the hangUp message
comes from the user. In the latter case, a disconnection request is sent to the
remote phone.

Text after:
1: body ~ f HE w
All other messages are discard

Apply Close Show Export

Delete

Please note the publications are saved within the diagram so it is important to also save

the diagrams.

6.2 Documentation

Let’s now go back the Project manager and create a new item of type Document:

5 Add child element

Containers
Requirements
Declarations

Active architecture
Behavior

Passive architecture
Hardware architecture
Testing/Validation

Documentation

External files

=]

Document

Mame:
File:

Language:

Design

E:/Project?/UserDocumer

Create legacy diagram

bes

[Auto-sort

Cancel

PragmaDev Studio V6.0

Page 127

Tutorial

PRAGMADEYV

modeling and testing tools

'ﬂ PragmaDev Studio - Project "phonerdp” (modified)

Generation Validation

k!

View Element

VIR Ak

Studio

‘B Ee;

Project Edit

O

Windows

*
Help

=] @ phone.rdp
normal
busy
n common.h
s sPhone
E—telephoneLibrary

trace

|EE myGULrdu

I

Let’s open the Document Design:

'E PragmaDev Studio - Document "Design”

Document Edit Section Windows Help

B E T

Section title:

Section header:

_

PragmaDev Studio V6.0

Page 128

TUforiul modeling and testing tools

Select Design and right-click to add a sub-section, or click on the "+" button under the
section list on the left:

L+ PragmaDev Studio - Document "Design” = O x
Document Edit Section Windows Help
BEkEe P BE I
Section title:
“Add sub-section.. Section header:
Delete
@ Ly Lo G e lvr To

This sub-section will actually be the first chapter of the generated documentation. Adding
other sub-sections at the same will generate other chapters. Adding sub-sections to this
section will generate sub-chapters. Let’s type the section title and add some contents
to the section with the "+" button under the "Section header" zone on the right side:

L. PragmaDev Studio - Document "Design" (medified) - O >
Document Edit Section Windows Help
BHEkEe » B A E
Section title: | Architecture|
= Design Section header:
Architecture [heading]
® O ® o & w L

In order to have the Diagram publication reference available, the diagrams containing
publications must be opened. So in our case the top level architecture diagram and the
pLocal process should be open in order to move on. After clicking the "+" button, the
following window will pop up:

PragmaDev Studio V6.0 Page 129

Tutorial

modeling and testing tools

Create section header item

Mew header item type
@ Styled text
(O Diagram publication reference

Publication diagram: plocal.rdd

Publication name: Connected5tate

() Table

Empty with initial size: FOWS X
From CSV file:
CSV format:
Style for cells:

Style for header:
(O External PNG image
Image file:
Store relative path:
() External text file reference
Referenced file:

Paragraph style for lines: | body

Mew header item position
() First in list
Before selected item
After selected item
@ Lastin list

Number of header rows: |1

columns
Browse...
:-separated, double-guoted cells

body

body

Browse...

Browse...

Cancel

The Styled text allows to insert plain text in the documentation. To insert one of the
diagram publication, select Diagram publication reference. The window should then

look like this:

PragmaDev Studio V6.0

Page 130

PRAGMADEYV

Tutorial modeling and testing tools

'ﬂ Create section header item x

Mew header item type
(O Styled text
® Diagram publication reference

Publication diagram: sPhone.rdd ~
Publication name: ToplLevelArchitecture ~
() Table
Empty with initial size: FOWS X columns
From CSV file: Browse...
C5V format: :-separated, double-gquoted cells
Style for cells: body

Number of header rows: |1

Style for header: body
(O External PNG image
Image file: Browse...
Store relative path:
() External text file reference
Referenced file: Browse...

Paragraph style for lines: | body

Mew header item position
() First in list
Before selected item
After selected item
@ Lastin list

Cancel

Select the appropriate Publication diagram and Publication name to insert in the doc-
ument. Then create another sub-section in the document with the other publication:

'ﬂ PragmaDev Studio - Decument "Design” (modified) = O X

Document Edit Section Windows Help

I TEL T
Section title: |Behavior
=l Design Section headen:

Architecture [headingl] 1

Behavior [heading1]

E\Project2\UserDocumentation\RTDS\6.00 Tuterial\Models\Doc\plocal.rdd
ConnectedState

& & @ Wy

PragmaDev Studio V6.0 Page 131

Tuioriul modeling and testing tools

6.3 Automatic generation

Go to Document / Export as / Open Document Format:

PragmaDev Studio - Document "Design” (modified) - O X
Document Edit Section Windows Help
Save Ctrl-5
Revert... .E
Auto-generate from project... Section title:
. Section header:
i
Close Ctrl-W RTF
OpenDocument Format
Microsoft OpenxML
PDF
LaTeX
SGML (advanced)
@® G o Gy e Oy

An OpenDocument is actually a zip file that contains several files among which:
« one is the document itself as an XML file,
« one describes the styles used in the document also as an XML file.

In order to generate the full OpenDocument zip file, PragmaDev Studio requires a tem-
plate file. There is a default one in the Studio distribution that will work fine, so you
don’t have to change it:

Pragmallev Studio X
Destination file: 0/ Tutorial/Medels/Doc/Design.odt Browsze...
OpenDocument template file: | confidefault-opendoc-template.odt Browse...
Use as default export: Mo ~

Cancel

Now we will create an OpenDocument container for our generated document in which
we can set a title, introduce a table of contents, and an index. To do so, let’s start Libre-
Office:

PragmaDev Studio V6.0 Page 132

PRAGMADEYV

Tutorial modeling and testing tools

[E untitled 1- LibreOffice Writer - o X

x

File Edit View Inset Format Styles Table Form Tools Window Help

B-2-H- el el - @t q H-Lih B
Iu

I EE VB NG-®

= 5= = 1=
gesl| 2= == -

L
(il
Default Paragraph Style |~ % Az |Liberation Serit v| 2pt v B 5 X x| AA T

L lzg.-’.i.i.i.s'.é. 8 0 8 w1 a1 a2 13 .o

W DO G ®E

v
| Do | = ————+| 100%

| Page1oft | 0words, 0 characters | Default Page Style English (UK) | o1

Create a new Master document with File / New / Master document menu:

[Untitled 1 - LibreOffice Writer
File Edit Miew Insert Format Styles Table Form Tools Window Help

[New v | [E] TextDocument Cirl+N . . ;5(\1 abc 1'|—
U

‘ AR
= open.. Ctrl+0 Spreadshest
Open Remote... Presentation v|[12pt |[¥|| B I -5 x2
@ Recent Documents] &) Drawing l:- 3 « 4 1 5 1 6 1 T 1 B a1 8§
B Close @ Formula
Wizards 3 Database
Templates ' | & HTIML Document
Reload @ XML Form Document
Versions... a
Labels
[E' Save Cirl+5 Business Cards
B} SaveAs.. Ctrl+Shift+S
Master Document

Save Remote...

= [=4

Templates... Ctrl+Shift+N

Save a Copy...
Save All

Q. Export...

g Export As b
Send »

Preview in Web Browser

[d PrintPreview Ctrl+Shift+0
= Print.. Ctrl+P
Printer Settings...
Properties...
Digital Signatures 4

@ Exit LibreOffice Ctrl+Q

PragmaDev Studio V6.0 Page 133

PRAGMADEV

Tutorial modeling and testing tools

Type the title, insert a page break, and insert a table of content with the Navigator
window:

Mavigator n

e R A
Index
File

New Document

[Mo selection possible]

Table of Contents, Index or Bibliegraphy s
P .
ype Entries Styles Columns Background Table of Contents
Type and Title Heading 1 1
R Heading 1.1 .1
Title: h’able of Contents Entry. 1
Heading 1.2 .1
Type: (Table of Contents |+
Protected against manual changes Heading 1
Create Index or Table of Contents This is the content from the first chapter. Thisisa
= user directory entry.
For Evaluate up to level: |10 =
Heading 1.1
Create From This is the content from chapter 1.1. This is the entry
] Outline for the table of contents.
[Additional styles Assign styles... Heading 1.2
This is the content from chapter 1.2. This keyword is
Index marks amainentry.

Table 1: This is tabie 1

A

Help Breview Beset Cancel

In the same Navigator window, insert the OpenDocument we have just generated:

Mavigator n

AR
Text Index

B Table of Cf Eile

New Document

1

PragmaDev Studio V6.0 Page 134

Tutorial

modeling and testing tools

And insert an index:

Table of Contents, Index or Bibliegraphy

Type Entries Styles Columns Background
Type and Title

Title: 'ndac

Type: |Alphabetical Index |~

Protected against manual changes

Create Index or Table of Contents

For: |Entire document |~

Options
Combine identical entries
Combine identical entries with f. or ff.

nbine Oa Concordance file

Case-sensitive

Sort

£

Language: |Eng|ish (UK}

Help Preview

[AutoCapitalise entries
[Keys as separate entries

I ———

Index

Chapter.
Keyword
Primary key
Secondary key.
thi

Heading 1

This is the content from the first chapter. Thisisa
user directory entry.

Heading 1.1

This isthe content from chapter 1.1. This is the entry
for the table of contents.

Heading 1.2

This is the content from chapter 1.2. This kewword is
a main entry.

Table 1: This is table 1

Reset Cancel

It is possible to drag and drop sections in the Navigator window to get the right order:

Mavigator

S

>rk-e-

&

Text

E Table

Text

B Index

G2 Design.odt

of Contents

Itis possible to add other sections or

other external documents in the master document.

When you further document your system, to update the generated documentation: open
your Pragmadev Studio document, export it as an OpenDocument, replacing the exist-
ing one, and that’s it! The OpenOffice master document will be updated by itself as
well as its table of contents and index and ready to be printed. You can also set the

OpenDocument export as the default one and just press the "B button in the document

editor:

PragmaDev Studic

Destination file:

Use as default export:

OpenDocument template file:

*
.0/ Tutorial/Models/Doc/Design.odt Browse...

confidefault-opendoc-template.odt Browse...

'Yes - absolute template path ~

Cancel

PragmaDev Studio V6.0

Page 135

Tutorial

PRAGMADEV

modeling and testing tools

Please note it is also possible to automatically generate all publications and a document
based on the project architecture. To do so, create a new document:

5 Add child element

Containers

Requirements =]
Declarations

Active architecture
Behavior

Passive architecture
Hardware architecture Name: AutoGenerated
Testing/Validation

Files E:/Project?/UserDocumer

External files

Document

Language:

Create legacy diagram

Open

s

[Auto-sort

Cancel

Open it and go to the "Document" / "Auto-generate from project..." menu:

i PragmaDev Studio - Dacument "AutoGenerated” — O *
Document Edit Section Windows Help
Save Ctrl-5 A
Revert... .E
Auto-generate from project... Section title:
. Section header:
Export as 4
Close Ctrl-W
& © & @ G ta 5.4
Select the level for each publication:
'ﬂ Generate document from project x
Create publications in behavior diagrams: |for each transition ~
Paragraph style for files: Mone (don't import files) |~
.
PragmaDev Studio V6.0 Page 136

PRAGMADEV

Tutorial modeling and testing tools

And a full document is generated:

'ﬂ PragmaDev Studio - Document "AutoGenerated” (modified) = O X

Document Edit Section Windows Help

BoE:9 »E X E

Section title: | Process plocal

= AutoGenerated Section header:
MSC normal [heading] ~
MSC busy [heading1] ==—| EM\Project2\UserDocumentation'\RTDSY6.0\Tuterial\Models\D
=1 start_auto
= Systern sPhone [heading]
Process plocal [heading?2] =—| EM\Project2\UserDocumentationRTDSAE.0\Tuterial\Models\D
Process pCentral [heading?] =—1 transition_gettingld_idMsg_auto
Class diagram telephonelibrary [heading]] ==| E\Project2\UserDocumentation’\RTDSY6.0\Tutorial\Models\D
MSC trace [heading1] =—1 transition_gettingld_errorMsg_auto
=| EM\Project2\UserDocumentation\RTDS,6.00\Tutorial\Models\D
e mer
=—1 transition_disconnecting_disConf_auto
=—=—| EM\Project2\UserDocumentation\RTDS6.04 Tutorial\Models\D
e
=—1 transition_idle_conReq_auto
==—| EM\Project2\UserDocumentationtRTDS\G.0\Tuterial\Models\D
e
= transition_idle_call_auto
=—| EM\Project2\UserDocumentationtRTDS\6.0\Tuterial\Models\D
J
= transition_connected_conReq_auto
v
£+ >
@ © @ & D@ W

If you already have existing publications at the proper level for the auto-generated doc-
ument, they will be reused. If a publication is missing, it will be created. You can add
explanation texts to the publications after creating the document.

PragmaDev Studio V6.0 Page 137

	Introduction
	A simple system
	PragmaDev Specifier Tutorial
	Organization
	Requirements
	Design
	Simulating the system
	Simulation options
	Byte-code generation
	The SDL simulator
	Verifying the behavior

	Prototyping GUI
	GUI editor
	Simulation

	Conclusion

	PragmaDev Studio
	Testing
	Test case
	Declarations
	Ports
	Templates
	Core test case
	Control part

	Simulation against the SDL system

	Code generation
	Code generation options
	Graphical debugging

	Validation
	Conclusion

	PragmaDev Developer Tutorial
	Organization
	Requirements
	Design
	Running the system
	Generation profile
	Compilation errors
	The SDL-RT debugger
	Verifying the behavior

	Prototyping GUI
	GUI editor
	GUI simulation

	Conclusion

	Automatic documentation generation
	Publications
	Documentation
	Automatic generation

