Real Time Developer Studio (RTDS) tool for Verification of properties and automatic code generation
Dedicated to the development of a modelling tool for the development of event driven software.
PragmaDev – Core technology

Specification and Description Language

SDL main characteristics:
• ITU-T standard (Z.100),
• Best modeling language for event driven systems (Telecom standards),
• Object oriented (since ’92),
• Formal (complete and non ambiguous),
• A UML profile based on SDL has been standardized,
• Increase quality by a ratio of 5,
• Reduces development time by 30%.
PragmaDev – Supported languages

Analysis

Specification

Design

UML

SDL Z.100

SDL-RT

C

C++

Informal

Fully formal

Semi formal
PragmaDev – Modelling levels

Informal modelling for requirements: UML
- Edition
- C++ stubs generation

Semi-formal modelling for design: SDL-RT
- Edition
- Syntaxic et semantics checking
- Code generation
- Graphical debugging

Fully formal modelling for specification: SDL Z.100
- Edition
- Syntaxic et semantics checking
- Simulation
- Verification
- Code generation
- Graphical debugging
- Test
PragmaDev – Positionning in Taste framework

- Matlab
- RTDS
- Scade

Continuous Event driven Synchronous

- AADL
- ASN.1

Encoders / Decoders
PragmaDev – Documentation generation

A document is made of logical publications

The generated documentation
RTF, OpenDocument, HTML, SGML
including table of content and index entries

A publication
PragmaDev – Model simulation

A graphical debugger for fully formal models based on the model semantic

- Set breakpoints and step in the diagrams,
- Externally defined or interactive operator calls,
- Dynamic traces,
- Connecting an external tool is possible through a socket.
PragmaDev – Code generation options

- Control of memory allocation,
- C scheduler provided,
- Generated code is legible,
- Generation profile wizard,
- Royalty free,
- Documented for customization.
PragmaDev – Code generation and debug

The Model debugger relies on a traditional C debugger or cross debugger to provide graphical debugging.
PragmaDev – Model debugger

Depending on the integration model:

- Relies on the target semantic: processor and RTOS,
- Relies on the SDL semantic.

Debug in the model:

- Breakpoints, stepping, in the diagrams or in the generated C files,
- Dynamic MSC traces,
- Connecting an external tool is possible through a socket.
PragmaDev – Message Sequence Chart

Execution traces:
• States,
• Events,
• Semaphores,
• Timers.

Trace level configuration
Display of system time

MSC Diff allows to check:
• Conformity,
• Non-regression.
PragmaDev – Model coverage

- Graphical model coverage analysis
- Merge feature
PragmaDev – Model based testing

- Based on TTCN-3 international standard:
 - Data types definitions,
 - Templates definitions,
 - Test cases,
 - Execution control.
- Connects automatically to the Simulator:
 - Breakpoints in the model or in the test suite,
 - Verdict displayed in the trace.
PragmaDev – Model checking

- Partnership with Verimag on IF technology.
 - Exhaustive simulation,
 - Observers,
 - Test generation.
- RTDS feature
 - Export to IF,
 - Execute a script
 - Generate an MSC feedback.
PragmaDev – External tool integration

- SDL
- Observer file
- TTCN
- MSC

- RTDS

- translate to file
- executes

- Script file

- IF
- IF compiler
- executable
- state file
- transition file
- error file

- Python script
- Resulting scenario
PragmaDev – Conclusion

- Three levels of modelling:
 - Informal,
 - Semi-formal,
 - Formal.

- Tools to:
 - Document,
 - Simulate,
 - Validate,
 - Test.

- Based on international standards.

- Integrated in Taste framework.