
Model-driven design languages for
real-time and embedded applications

MODEL-BASED DESIGN

� The best-known MDE approach is the
model-driven architecture defined and regis-
tered by the object management group (OMG)
in 2001. Another well-known approach is
model-driven design (MDD) where the focus is
narrowed in order to work on a more precise
model. A model-driven approach distinguish-
es three types of models: an abstract model of
the system under development called the plat-
form-independent model (PIM), a model
defining the platform called the platform def-
inition model (PDM), and an implementable
model of the system called the platform-specific
model (PSM). The PIM is the system under de-
velopment and the PDM defines the rules to
transform the PIM into a PSM. So in practice
the team works on the PIM, the PDM is defined
by the application domain or the company, and
the PSM is automatically generated out of the
PIM and the PDM.

To be efficient, the PIM must be abstract
enough to be independent of the platform on
which the system will be implemented, but at
the same time it should be precise enough to be
translated into a PSM. So in order to success-
fully translate the model, the PIM relies on a
virtual machine the characteristics of which are
a number of basic services and a semantic
strong enough to be expressive. In the 80s, the
International Telecommunication Union stan-
dardised a language to describe telecommuni-

cations protocols: the specification and de-
scription language (SDL), under reference
Z.100. The main goal was to describe the pro-
tocols in an unambiguous way so that all
manufacturers’ implementations of a standard
protocol would be compatible with each other
(e.g. a Nokia GSM phone would work with an
Ericsson base station). The European Telecom-
munications Standardisation Institute has
 extensively used SDL to describe telecommu-
nication standards and it is obvious to state that
compatibility has been successfully achieved.
The SDL standard is regularly updated and
major new versions have been produced every
four years since 1984. The 1988 (SDL '88)
 version was considered to be the first usable
 version, the 1992 version introduced object ori-
entation, and the 2000 version aligned SDL with
some UML concepts such as the class diagram.

The main characteristics of SDL are: it is a
graphical language, it is object oriented, it is
event oriented, the model is independent from
implementation, the language defines a strong
semantic of execution and it contains abstract
data types. Because it embeds abstract data
types and a syntax to manipulate data, SDL
models are formal (complete and non-am-
biguous). An SDL model can be fully de-
scribed because of this characteristic but it does
not have to be. It is possible to describe non-de-
terministic models with, for example, the use of

the ANY keyword allowing to describe “any”
input or “any” execution path. It is also possi-
ble to leave out some operations with the use of
undefined “OPERATORS” describing an oper-
ation interface and leaving the implementation
to the designers. An SDL model can also con-
tain informal operations written in natural lan-
guage. So depending on the level of precision
within the model, an SDL system can be infor-
mal or very precise. SDL has built-in concepts
and services such as processes, messages, timers,
and procedures. All these concepts are sup-
ported by most RTOS making implementation
on a real target straightforward.

The strong semantic of SDL and its built-in
services describe an SDL virtual machine on
which a model is based. This is actually the
main characteristic of the platform-indepen-
dent model. The definition of eventual external
operators, and the implementation of the SDL
services provided by the SDL virtual machine
constitute the actual definition of the platform,
the platform definition model. From the PIM
and the PDM, it is possible to fully generate the
platform-specific model in an executable lan-
guage such as C code. As SDL became increas-
ingly used in telecommunications systems, it
appeared its built-in concepts were pretty close
to the ones used in real-time operating systems:
� the system is decomposed into tasks running

concurrently,

By Emmanuel Gaudin, PragmaDev

Model-driven engineering is
an approach to software

development based on
abstract models of the system

to be developed.

July 2007 18

July 2007 20

MODEL-BASED DESIGN

� most of the tasks are based on extended finite
state machines,

� tasks communicate with messages sent to
message queues,

� built-in timers help to deal with unexpected
behaviour.

Most telecommunications manufacturers have
used SDL to design their software and some of
them have measured the added value when using
this modeling language. The results are impressive:
it has increased quality by a ratio of 5 and reduced
the overall development time by 35% in average.

In 1997, the object management group stan-
dardised the Unified Modelling Language, a
merge of different object-oriented modelling
approaches, most of them coming from the
database application domain. The first versions
of UML, versions 1.x, were too generic to sup-
port a platform-independent model. They did
not contain any of the real-time operating sys-
tem concepts such as task, semaphores, and
timers. They did not contain any semantic, nor
any data type. In order to use UML to describe
a PIM, version 2 of UML introduced the con-
cept of profiles to make UML more precise
within each application domain. A profile
 allows to introduce specialized concepts and
some semantic within a UML model. But the
OMG did not define any standardised profile.
Therefore UML 2 tools have introduced their
own profiles, most of the time without docu-

menting them, making the models tied to the
tools they have been designed with, and tied to
the underlying profile that was used. The ITU
has taken this opportunity to work on a UML
profile for telecommunications systems based
on SDL under the Z.109 reference. The stan-
dard should be in force by the end of 2007, at
that time SDL will be a standardised UML pro-
file for telecommunications systems.

Because UML is very abstract and informal it is
mostly used in the early phases of the develop-
ment process when analysing and setting the
 requirements on the system. When it comes to
coding, traditional textual languages are at the
same level as the SDL abstract data types. Be-
cause of its graphical abstractions dedicated to
telecommunication systems, SDL is positioned
between the very generic UML and the very
specialized coding languages.

When using SDL, telecommunications manu-
facturers found the concepts within the l anguage
were not exactly the ones available in the real-
time operating systems nor the ones in textual
languages. For example, in SDL messages have
priorities and processes do not; on an RTOS it is
the other way around, tasks have priorities but
messages do not. As another example, in SDL it
is possible to define arrays indexed on reals,
which is very tricky to implement in C. To fully
conform to SDL, code generators had to support
all the SDL concepts and produced complex and

illegible code. So in order to be efficient, most
of the telecommunications manufacturers broke
the SDL semantic to use the one from their op-
erating systems, and wrote C code manipulating
C data types instead of the SDL data and syntax.
They were actually already using what we call
SDL-RT. As previously explained, SDL-RT
comes from industrial practice and its first ver-
sion has been written by PragmaDev so that
everybody has a common way of combining
UML, SDL, and C or C++. The specification is
freely available on http://www.sdl-rt.otg, and is
easy to read compared to an official standard. The
storage format is XML so that the description is
not tied to any tool. Since SDL-RT aims at all real-
time and embedded applications, the semaphore
concept has been introduced in the language so
that each service of a real-time operating system
has a dedicated graphical symbol. SDL-RT con-
cepts are now proposed to ITU in order to be
standardised. So eventually SDL-RT will most
likely become a standardised UML profile for real-
time applications.

SDL-RT diagrams are:
� the class diagram in which passive classes are

further described in C++ and active classes
are further described using the SDL finite
state machine,

� the architecture diagram which decomposes
the system in hierarchical functional blocks
down to the process level,

� the process behaviour which is described
using the SDL finite state machine because it
is much more detailed than ones from UML,

� the deployment diagram for distributed sys-
tems,

� the message sequence chart (MSC) to docu-
ment execution scenarios similar to the UML
sequence diagram.

Each service of the RTOS has a dedicated
symbol: dynamic task creation or deletion, mes-
sage input and output, timer start, cancel, and
time out, semaphore takes or gives.. All views
are related to each other making the model of
the system consistent.

Since its inception twenty years ago, SDL has
been a model-driven language for the specifi-
cation of telecommunications systems. Fol-
lowing industrial practice, SDL-RT has ex-
tended the application domain to all applica-
tions based on real-time operating systems.. In
the meantime, UML 1 being too generic, UML
2 has introduced the possibility to define pro-
files dedicated to an application domain but has
not standardised any. Each UML 2 tool has
therefore implemented a proprietary profile
that is rarely documented making portability to
another tool impossible. The ITU is standard-
ising a UML profile for telecommunications
systems based on SDL. The profile should be
 finalised by the end of 2007. �

SDL-RT diagrams

